Algoritmizace

Daniel Prtsa, Robert Pénicka
2025

Dynamické programovani (DP)
Nejdelsi rostouci podposloupnost
Optimalni poradi nasobeni matic
NejdelSi spolecna podposloupnost

Prehled

3*2*4 =24 0p.

|

|

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Join at slido.com
#7719040

010

Okt

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

) qﬂeléi rostouci podposloupnost

Z dané posloupnosti vyberte co nejdelsi rostouci podposloupnost.
5 4 9 1 5 3 2 10 0 8 6 1 7

Reseni: 4 5 6 7

Jiné mozné varianty J

Vlastnosti hledané podposloupnosti:
Klesajici, nerostouci, neklesajici, aritmeticka,
s omezenou rychlosti ristu, s vahami prvku, ... atd,, ...
zde neprobirané J

Koncepéni pfistup | |

Preved’ na znamou ulohu, definuj vhodny DAG podle danych
vlastnosti podposloupnosti, v DAG hledej nejdelSi cestu.

Algoritmizace

A4B33ALG 2015/11

) qﬁdeléi rostouci podposloupnost

Koncepéni pfistup |1 | Transformace na znamou dlohu |
Prvky posloupnosti budou uzly DAG, ktery je jiz topologicky
usporadan, poradi v posloupnosti = poradi v top. usporadani.
Hrana x --> y existuje prave tehdy,
kdyz x je v posloupnosti dfive nez y a navic x<y.

V tomto DAG hledame nejdelsi cestu. J
A
_— //A,A\. o\

y ‘,%
Y (o
a\(ame‘q‘e,@@ap

—
" —

— Algoritmus je znam, ma slozitost ©(N+M) , tedy O(Nzg.
Napr. pro rostouci posloupnost ma slozitost az ®(N“).

Algoritmizace

A4B33ALG 2015/11

) qﬁdeléi rostouci podposloupnost

Koncep¢éni pristup Il - sestav nezavisly a rychlejsi aIgoritmusJ
Registrujme optimalni podposloupnosti (OPP) vSech moznych délek.
OPP kazdé délky ma co nejmensi mozny posledni prvek.

To ji dava potencial budouciho ruistu.
Postupné metodou DP aktualizujme tyto optimalni podposloupnosti.

k 12 3 456 7 8 9101112

k .. index prvku

VI[k] .. hodnota prvku

p[k] .. index predchiidce prvku

V5491153101 8 6 2 7 iL[d] .. index pos}edniho prvku _
v rostouci podposloupnosti

|:’ - délkyd =1, 2, ..., N.

I -

Pro kazdy index k:
Necht’ d je index nejvétSiho prvku, pro ktery plati V[iL[d]] < V[k].
Potom iL[d+1] := k, p[k] = iL[d], pokud d existuje.
Jinak iL[1] := k, p[k] = null.
VI[iL[d]], d = 1..N je neklesajici, Ize v ni hledat v €ase O(log N).

Algoritmizace

A4B33ALG 2015/11

) 'qﬁ'deléi rostouci podposloupnost

k 12 3 456 7 8 9101112

V438104 2 9 07 516

k=11H
p - -232 -5.-505 8
iL 8 11 10
VIiLl 0 1 5

k=12
p - -232 -5 -515 810
iL 8 11 10 12

V[iLL 0 1 5 6

k .. index prvku
VI[k] .. hodnota prvku
p[k] .. index predchiidce prvku
iL[d] .. index posledniho prvku
v rostouci podposloupnosti
délkyd=1, 2, ..., N.

Pro kazdy index k:
Necht' d je index max. prvku,
pro ktery plati
V[iL[d]] < VIK].
Potom iL[d+1] := k, p[k] = iL[d],
pokud d existuje.
Jinak iL[1] := k, p[k] = null.

Pro kazdé k nalezneme d v ¢ase O(log N) ptilenim intervalu.
Aktualizace iL a p probéhne v konstantnim case.

Celkem je slozitost O(N log (N)).

Algoritmizace

A4B33ALG 2015/11

) qﬂeléi rostouci podposloupnost

k 12 3 45 6 7 8 9101112

p -
iL 1
VIiL] 4
"
iL 2
ViL] 3
p - - 2
iL 2 3
V[iL] 3 8
p - -23
iL2 3 4
V[iL] 3 8 10

Algoritmizace

k 123 456 7 8 9101112

p
iL 2 5
V[iL] 3 4
p - mm
iL 6 5
V[iL] 2 4
p [—
iL 6 5
V[iL] 2 4
p - mm
iL 8 5
V[iL] 0 4

8104 2 9 0 7 5 1 6

ONDN

(4,1

A4B33ALG 2015/11

) 'qﬁ'deléi rostouci podposloupnost

k 12 3 456 7 8 9101112

k 12 3 456 7 8 9101112

V4 38104 2 9 07 5 1 6

V4 3 8104 2 9 07 5 1 6

p ---232-5-.5125
0 3 9 . 5 = iL 8 510
i?_857 V[iL] 0 4 5
VIiL] 0 4 9 p - 232 -5 .-5658
239 .5 .5 iL 8 1110
\;)L859 Vit 0 15
ViiLl 0 4 7 p--@23
iL 8 T140 12

VIiL] 0 1\5 6

Rekonstrukce optimalni cesty J

Posledni definovany prvek v iL je indexem posledniho prvku
jedné z optimalnich podposloupnosti celé posloupnosti.
Pole p uréuje pomoci predchidcu tuto podposloupnost. OM

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 |
ﬂtlmalnl poradi nasobeni matic

Pocet operaci v nasobeni dvou matic J

| x b|EE] - a:
J:ED"'D, C \D:tD.NDJ
b c

P

=

.. X —
1)]

Y |=
]

1
b operaci nasobeni pro vypocet
jednoho prvku vysledné matice

a*c prvku
ve vysledné matici

Vynasobeni dvou matic o rozmérech axb a bxc
vyzaduje celkem a * b * ¢ operaci nasobeni dvou prvku (Cisel).

Scitani zde neuvazujeme, Ize pro néj vyvinout analogicky postup. J

Algoritmizace

[| y i y y . y] A4B33/—:LG 2015/11
qﬂlmalm poradi nasobeni matic

P¥iklad nasobeni vice maticJ

3*2%4=240p.

|

|

30 +24 =54 op

Algoritmizace

4

|

40 + 60 = 100 op.

A4B33ALG 2015/11

qtlmalnl poradi nasobeni matic
mefE)]
2

Soucin (A4 x Aj) xAg vyzaduje 54 operace nasobeni .
Soucin A4 x (AyxAgz) vyzaduje 100 operaci nasobeni.
Evidentné, na zpusobu uzavorkovani zalezi .

Catalanova cisla CNJ

Soucin Aq x Agy x Az x..xAy lze uzavorkovat
Cn = Comb(2N, N) / (N+1) zpusoby.

C1:Cg s Cy . =1,1,2,5,14,42,132,... Cy >2NproN>7.

V obecném pripadé by mélo vyzkouseni vSech uzavorkovani
exponencialni slozitost.

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 |
'qﬂtlmalm poradi nasobeni matic

* 14 raznych zpusobi uzavorkovani soucinu 5 Cinitelt

Algoritmizace

[| y i y y . y] A4B33P;LG 2015/11
thmalm poradi nasobeni matic

Instance ulohy J

Mame spocitat co nejefektivnéji soucin realnych matic
A4 xAg x Az x Ay xAg x Ag,

kde rozmeéry jednotlivych matic jsou po radeé

30 x 35,35 %x 15,15 % 5,5x10, 10 x 20, 20 x 25.
(Vysledna matice D ma rozmeér 30 x 20).

Graficka podoba (dimenze matic ve spravném pomeéru) J

A A, A3 A, A Ag D
X X X X X

Instance prevzata z [CLRS], kap. 15.

Algoritmizace

A4B33ALG 2015/11

'q)tlmalnl poradl nasobenl matlc

A; A4
X X X X X -

Sledujeme jen pocet operaci soucinu dvou realnych cisel.
Uvazujeme riizné moznosti uzavorkovani a tim i poradi vypoctu.

metoda J Vyraz J Pocet operaci J

zleva doprava ((((Aq x Ap) x A3) x Ay) x Ag) x Ag 43 500
zprava doleva A4 x (Ag x (Ag x (Ag x (Ag x Ag)))) 47 500
nejhorsi A4 x ((Ag x ((Ag x Ag) x Ag)) x Ag) 58 000
nejlepsi (Aq x (Ag x A3)) x ((Agq x Ag) x Ag) 15125

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 []
'qotlmalnl poradi nasobeni matic

Vg B
(A1 X A2 X A3) X (A4 e X AN-1 X AN)

(A1 X A2 X A3 X A4) X (een X AN-1 X AN) > N _1 m02I1YCh miSt,
v nichz vyraz
o Jb rozdélime {}
(Aqx Ap x Ag x Ag x ..)x (AN X AN) a provedeme
@ posledni nasobeni

(A1X A2 X A3 X A4 X e X AN_1)X AN y

Predpokladejme, ze mame predpocitano optimalni uzavorkovani
pro kazdy modry usek celkového vyrazu.

Algoritmizace

A4B33ALG 2015/11

E n /4 I 4 A4 ’ e F =
'qptlmalnl poradi nasobeni matic

Agx(Ay x Ag x Ay ... x ANq X ANy) = B[1,1]
(Aqx Ag)x (A3 x Ay ... x Ayq x ANy) = B[1,2
(Aqx Ap x Ag)x(Ag ... x Ay x ANy) = B[1,3]
(Aqx Ag x Ag x Ag)x(..x Ayq x AN) = B[1,4

(A1 X A2 X A3 X A4 X)X (AN-1 X AN) = B[1,N-2]
(A1 X A2 X A3 X A4 X .. X AN_1)X AN = B[1,N-1]

X

X

B[2,N]
B[3,N]
B[4,N]

B[5,N]

B[N-1,N]
B[N,N]

Matice BYJi, j] predstavuje vysledek vynasobeni odpovidajiciho useku.

Necht’' r(X) resp. s(X) predstavuji pocet radku resp sloupct matice X.

Podle pravidel nasobeni matic plati
r(BIi, jl) = r(A;), s(B[i, i) = s(A;), pro1sisjsN.

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 []
'q)tlmalnl poradi nasobeni matic

Necht’ MOJi, j] pfedstavuje minimalni pocet operaci potrebnych
k vypoétu matice BJi, j], tj. minimalni pocet operaci potrebnych
k vypoCtu matice A;x A% ... x A XA,

B[1,1] x B[2,N MO[1,1] + r(A,)*s(A,)*s(Ay) + MO[2, N]
B[1,2] x BI3,N] MO[1,2] + r(A)*s(A,)*s(Ay) + MO[3, N]
B[1,3] x B[4,N MOI[1,3] + r(A,)*s(A3)*s(Ay) + MO[4, N]

B[1,N-2].>.<. B[N-1,N] MOI[1,N-2] + r(A,)*s(Ay.o)*s(Ay) + MO[N-1, N]
B[1,N-1] x B[N,N] MO[1,N-1] + r(A,)*s(Ay.1)*s(Ay) + MOIN, N]

h 4 h 4 h 4
operaci v operaci pfri operaci v
levém Useku nasobeni pravém useku

B[1,.] x B[.,N]

Celkem dostavame MOJ[1,N]:
MOI[1,N] = min {MO[1,k] + r(A,)*s(A;,)*s(Ay) + MO[k+1,N] | k =1..N-1}

Algoritmizace

. : y y " . y . A4B33P;LG 2015/11
'q)tlmalnl poradi nasobeni matic
MO[1,N] = min {MO[1,k] + r(A,)*s(A,)*s(Ay) + MO[k+1, N] | k=1..N-1}

Za predpokladu znalosti MOJi, j] pro useky kratsi nez [1, N],
Ize reSeni celé ulohy, tj. hodnotu MOJ[1, N], spo€ist v €ase ®(N). (*)

Rekurentni vyuziti FreSeni mensich poduloh J

Identické uvahy, jaké jsme provedli pro cely vyraz
Agx ApxAg x...xAN,

provedeme rovnéz pro kazdy jeho souvisly usek
AL X Ap4q X% ... XxARq4 X AR , 1sL=sR=N.

Pocet téchto souvislych usekll je stejny jako pocet dvojic indexu
(L, R), kde 1 =L <R £ N. Ten je roven Comb(N, 2) € ©(N?).
Podulohu na useku (L, R) Ize spocCist podle (*) v case O(N),

celou ulohu tak Ize vyreSit v case O(N3).

Algoritmizace

A4B33ALG 2015/11

ﬂtlmalnl poradi nasobeni matic

MOIL, R] = min {MOI[L,k] + r(A,)*s(A,)*s(Ag) + MO[k+1,R] | k = L..R-1}
Hodnoty MOI[L,R] ukladame do 2D pole na pozici s indexy [L][R].

Pri vypoétu MOI[L,R] podle @pouiivéme vesmés hodnoty MO[x,y],
kde rozdil y - x (odpovidajici délce podvyrazu) je mensi nez

rozdil R - L.

Tabulku DP proto vyplnujeme v poradi rostoucich rozdila R - L.

0. Vypinime prvky s indexy[L][R], kde R-L = 0, to je hlavni diagonala.
1. Vyplnime prvky s indexy[L][R], kde R-L =1, to je diagonala

tésné nad hlavni diagonalou.
2. Vyplnime prvky s indexy[L][R], kde R-L = 2, to je diagonala

tésné nad predchozi diagonalou.

N-1. Vyplnime prvek s indexem [L][R], kde R-L = N-1, to je pravy
horni roh tabulky.

Algoritmizace

[| y i y y . y] A4B33P;LG 2015/11
thmalm poradi nasobeni matic

Schéma postupu vypoctu J
R-L=0

R-L=3

p

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 []
ﬂtlmalm poradi nasobeni matic

MOI[L,R] = min {MO[L,k] + r(A,)*s(A,)*s(Ag) + MO[k+1,R] | k = L..R-1} J

Ukazka postupu vypoctu J

MO[3,8] = min {
MO / MOI[3,3] + r(A;)*s(A;)*s(Ag) + MOI[4,8],
1 2345678 MO[3,4] + r(A3)*s(A4)*s(Ag) + MO[5,8],
0 7 MOI3,5] + r(A;)*s(As)*s(Ag) + MO[6,8],
0 / MOI[3,6] + r(A;)*s(Ag)*s(Ag) + MO[7,8],

MOI[3,7] + r(As)*s(A,)*s(Ag) + MO[8,8]}

Oznacme PI[L, R] :=r(A|)*s(Ag). Potom

MOI[3,8] = min {
0 + s(A3)*P[3,8] + w,
a + s(A,)*P[3,8] + x,
b + S(As)*P[3,8] +,

L ¢ + s(Ag)*P[3,8] + z,

0 d + s(A;)*P[3,8] + 0}.

0O NO O A WDN -
o

o
o|N|< |IX|s

Algoritmizace

A4B33ALG 2015/11
r r

. u / 4 / 4 A4 Y 4 |
qﬂlmalm poradi nasobeni matic

Instance dlohy |

Aq A, A3 Ay Ag Ag D
X X X X X —
30 x 35 35x15 15x5 5x10 10 x 20 20 x 25 30 x 25
MO 1 2 3 2 5 6
1 0 15750 7875 9375 11875 |15125
> 0 0 2625 4375 7125 10500
3 0 0 0 750 2500 5375 _
4 0 0 0 0 1000 3500 | Optimum]
5 0 0 0 0 0 5000
6 0 0 0 0 0 0

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 []
ﬂtlmalnl poradi nasobeni matic

Rekonstrukce uzavorkovani J

MO[L,R] = min {MO[L,k] + r(A_)*s(A,)*s(Ag) + MO[k+1,R] | k = L..R-1}

Pri uréeni MOI[L,R] do rekonstrukcni tabulky RT stejné velikosti jako MO
zaneseme na pozici [L][R] hodnotu k, v niz minimum @ nastalo.
Hodnota k urcuje optimalni rozdéleni vyrazu

(AL x AL 49 X ... X AR)

na dva mensi optimalné uzavorkované vyrazy
(AL x Apgq X oo X A) X (Agsq X Aggo X oo X AR)

Hodnota RT[1, N] ur€uje optimalni rozdéleni celého vyrazu

Ay x Ay x... x Ay

na prvni dva mensi optimalné uzavorkované vyrazy

(A1 X A2 X waa X Ak) X (Ak+1 X Ak+2 X e X AN)

Dale rekonstrukce optimalniho uzavorkovani pokracuje rekurzivné analogicky
pro vyraz (Aq x Ay x ... x Ay) aprovyraz (Apiq X Agpo X ... X Ay)

a dale pro jejich podvyrazy atd.

Algoritmizace

A4B33ALG 2015/11

. r r \'4 r | 4 r | |
%alm poradi nasobeni matic
RT

1 2 3 4 5 6
1 0 1 1 \\ 3
2 0 2 3 3 3
3 0 0 0 3 3 3 A, Ag
4 0 0 0 0 5
A, A A, A
5 0 0 0 0 0 5 278 e
6 0 0 0 0 0
Aq Ag A,
(A4 X (Agp xA3))x((Agx Ag) x Ag) D

X X X X X

Algoritmizace

A4B33ALG 2015/11

. u / 4 / 4 A4 Y 4) 4 Y 4 []
'q)tlmalnl poradi nasobeni matic

Odvozeni asymptotické slozitosti J
Pocet bunék, z nichz je pocitan obsah

index | Radkové dané buriky v DP tabulce, je amérny
radku soucty slozitosti vypo€tu obsahu této bunky.
Ak=N_4 12*(N-1)*N 1123 N-3 | N-2 | N-1
k=N—2 1/2*(N-2)*(N-1) 1 | 2 N-4 | N-3 | N-2
k=N_3 1/2*(N-3)*(N-2) 1 N-5 | N-4 | N-3
k=k 1/2 * k * (k+1) 1 N-k-2|N-k-1| N-k
k=3 1/2*3*4 1 2 3
k=2 12*2*3 1 2
k=1 1/2%1* 2 1

: . N1 LN , N-1
Celkovy | 1/2 kz_ k * (k+1) 12* Y k2 + 1/2* ¥ k

v 1 k=1 k=1
soucet
1/2 * (N-1) * N * (2N-1)/6 + 1/2* (N-1) * N/2 e O(N?3)

J

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

A4B33ALG 2015/11

) m spolecna podposloupnost

Dvé
posloupnosti Al [CBEADDEA Al =8
B: DECDIZBRIDA |B|=7
Spole¢na A- Nz 2Blo =D

podposloupnost

DECDZBDA

C: C DA |IC| =3
Nejdelsi A [cBEADDERA
spolecna
podposloupnost B: DECDBDA
D=1 C: E DDA IC| =4

Algoritmizace

A4B33ALG 2015/11

) m spolecna podposloupnost

12 3 4 5 6 7 8
A8: CBEADDEA

An: (aq,ay, ..., a,)

By (b, bs, ..., by)
Cy: (cq,Cp ..ry C) B-: DECDIBDA

C, = LCS(A,, B,,) Cy | EDDA

Rekurzivni pravidla:

(an — bm) ==> (Ck — an — bm) & (Ck-1 =LCS (An_1, Bm_1))

12 3 4 5 6 7 8 12 3 4 5 6 7 8
A8: C BEADDEA A7: C BEADDE [
B7: DECDUBTDA B6; DECDTZBD .
C4: E DDA C3: E D D.

Algoritmizace

Algoritmizace

A4B33ALG 2015/11

) m spolecna podposloupnost

(a,!=b,) & (¢ !=a,) ==> (C, =LCS (A, 1, B.))

12 3 4 5 6 7 8

C BEADDE

DECDZBD

E DD

12 3 4 5 6 7 8

CBEADD.

DECDIZBD

E DD

(a,!=b,) & (¢ !=b,) ==> (C,=LCS (A, B 1))

1 2 3 4 5 6 7 8

C BEAD

DECDB

E D

1 2 3 4 5 6 7 8

C BEAD

DECD.

E D

31

A4B33ALG 2015/11

) m spolecna podposloupnost

Rekurzivni funkce — délka LCS

0 n=0or m=0
C(n,m) = C(n-1, m-1) +1 n>0,m>0,a,=b,
max{ C(n-1, m), C(n, m-1) } n>0,m>0,a,#Db,

Strategie dynamického programovani

C[n][m] e >

Algoritmizace

A4B33ALG 2015/11

) mspoleéné podposloupnost

Konstrukce DP tabulek pro LCS

void findLCS () {
for(int a=1l; a<=n; a++)
for(int b=1; b<=m; b++)

1f(Ala] == B[b]) {
Cla]l] [b] = Cla-1][b-1]1+1;
arrows [a] [b] = DIAG; X\
}
else
1f(Cla-1][b] > Cla] [b-1]) {
Cla] [b] = Cla-1][b];
arrows[a] [b] = UP; %
}
else {
Cla] [b] = Cla] [b-1];
arrows|[a] [b] = LEFT,; <=

} }

Algoritmizace

A4B33ALG 2015/11

) m spolecna podposloupnost

- 0 1 2 3 4 5 6 7
B DIE|[C|D|B|D|A

Eg‘g 0 oloflololololo]o
- 1| c || o [*o|* 0[N 1
“CBEADDEA’ 2 | B0 [*o|* ot N o
g 3 | E[]|0 [N 1|9t o/l
“DECDBDA’ R RS | S S P AL
5 | D || 0 |X1| 7| 3 Xo| 2R3
6 D 0 K14_1<_1K2<_2K34_3
7 E([o [t x| 2 5|5

8 (A ([0t 1t 2 2 T2t sN e

Algoritmizace

A4B33ALG 2015/11

) Wspoleéné podposloupnost

Vypis NSP -- rekurzivne :)

void outLCS(int a, 1int b) {

1f(a ==0 || b ==) return;

1f(arrows[a] [b] == DIAG) {
outLCS (a-1, b-1); // recursion ...
print (Alal): // ... reverses the sequence!
}

else

1f(arrows[a] [b] == UP)
outLCS (a-1,b);

else
outLCS (a,b-1);

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Nejdelší rostoucí podposloupnost
	Snímek 5: Nejdelší rostoucí podposloupnost
	Snímek 6: Nejdelší rostoucí podposloupnost
	Snímek 7: Nejdelší rostoucí podposloupnost
	Snímek 8: Nejdelší rostoucí podposloupnost
	Snímek 9: Nejdelší rostoucí podposloupnost
	Snímek 10
	Snímek 11: Optimální pořadí násobení matic
	Snímek 12: Optimální pořadí násobení matic
	Snímek 13: Optimální pořadí násobení matic
	Snímek 14: Optimální pořadí násobení matic
	Snímek 15: Optimální pořadí násobení matic
	Snímek 16: Optimální pořadí násobení matic
	Snímek 17: Optimální pořadí násobení matic
	Snímek 18: Optimální pořadí násobení matic
	Snímek 19: Optimální pořadí násobení matic
	Snímek 20: Optimální pořadí násobení matic
	Snímek 21: Optimální pořadí násobení matic
	Snímek 22: Optimální pořadí násobení matic
	Snímek 23: Optimální pořadí násobení matic
	Snímek 24: Optimální pořadí násobení matic
	Snímek 25: Optimální pořadí násobení matic
	Snímek 26: Optimální pořadí násobení matic
	Snímek 27: Optimální pořadí násobení matic
	Snímek 28
	Snímek 29: Nejdelší společná podposloupnost
	Snímek 30: Nejdelší společná podposloupnost
	Snímek 31: Nejdelší společná podposloupnost
	Snímek 32: Nejdelší společná podposloupnost
	Snímek 33: Nejdelší společná podposloupnost
	Snímek 34: Nejdelší společná podposloupnost
	Snímek 35: Nejdelší společná podposloupnost
	Snímek 36

