
Algoritmizace
1/36

Algoritmizace

Daniel Průša, Robert Pěnička

2025

Algoritmizace
2/36

Přehled
◼ Dynamické programování (DP)

 Nejdelší rostoucí podposloupnost

 Optimální pořadí násobení matic

 Nejdelší společná podposloupnost

3* 2 * 4 = 24 op.

5 * 3 * 2 = 30 op.

3

5

2

4

2

4

3

2

5

3

4

0 op.

()

Join at slido.com

#7719040

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
4/36

Nejdelší rostoucí podposloupnost

Z dané posloupnosti vyberte co nejdelší rostoucí podposloupnost.

5 4 9 11 5 3 2 10 0 8 6 1 7

Řešení: 4 5 6 7

Vlastnosti hledané podposloupnosti:

Klesající, nerostoucí, neklesající, aritmetická,

s omezenou rychlostí růstu, s váhami prvků, ... atd., ...

Převeď na známou úlohu, definuj vhodný DAG podle daných

vlastností podposloupnosti, v DAG hledej nejdelší cestu.

Koncepční přístup I

zde neprobírané

Jiné možné varianty

Algoritmizace
5/36

Nejdelší rostoucí podposloupnost

Prvky posloupnosti budou uzly DAG, který je již topologicky

uspořádán, pořadí v posloupnosti = pořadí v top. uspořádání.

Hrana x --> y existuje právě tehdy,

když x je v posloupnosti dříve než y a navíc x<y.

Transformace na známou úlohu

5 4 11 5 3 2 10 0 8 6 1 79

Algoritmus je znám, má složitost (N+M) , tedy O(N2).

Např. pro rostoucí posloupnost má složitost až (N2).

V tomto DAG hledáme nejdelší cestu.

Koncepční přístup I

A4B33ALG 2015/11

Algoritmizace
6/36

Nejdelší rostoucí podposloupnost

A4B33ALG 2015/11

k .. index prvku

V[k] .. hodnota prvku

p[k] .. index předchůdce prvku

iL[d] .. index posledního prvku

v rostoucí podposloupnosti

délky d = 1, 2, ..., N.

2 78 610 1311 54 95

--

--

1210 118 96 74 52 31k

V

p

iL

Registrujme optimální podposloupnosti (OPP) všech možných délek.

OPP každé délky má co nejmenší možný poslední prvek.

To ji dává potenciál budoucího růstu.

Postupně metodou DP aktualizujme tyto optimální podposloupnosti.

Koncepční přístup II - sestav nezávislý a rychlejší algoritmus

Pro každý index k:

Nechť d je index největšího prvku, pro který platí V[iL[d]] < V[k].

Potom iL[d+1] := k, p[k] = iL[d], pokud d existuje.

Jinak iL[1] := k, p[k] = null.

 V[iL[d]], d = 1..N je neklesající, lze v ní hledat v čase O(log N).

Algoritmizace
7/36

Nejdelší rostoucí podposloupnost

A4B33ALG 2015/11

Pro každý index k:

 Nechť d je index max. prvku,

pro který platí

V[iL[d]] < V[k].

 Potom iL[d+1] := k, p[k] = iL[d],

pokud d existuje.

 Jinak iL[1] := k, p[k] = null.

1 67 59 0210 43 84

1210 118 96 74 52 31k

V

1 50V[iL]

5 8-- 5-- 53 2-- 2--
11 108

p
iL

61 50V[iL]

105 8-- 5-- 53 2-- 2--
1211 108

p
iL

k = 11

k = 12

Pro každé k nalezneme d v čase O(log N) půlením intervalu.

Aktualizace iL a p proběhne v konstantním čase.

Celkem je složitost O(N log (N)).

k .. index prvku

V[k] .. hodnota prvku

p[k] .. index předchůdce prvku

iL[d] .. index posledního prvku

v rostoucí podposloupnosti

délky d = 1, 2, ..., N.

Algoritmizace
8/36

Nejdelší rostoucí podposloupnost

A4B33ALG 2015/11

4V[iL]

--
1

1210 118 96 74 52 31k

p
iL

3V[iL]

2

p
iL

83V[iL]

-- 2--
32

p
iL

8 103V[iL]

3-- 2--
3 42

p
iL

1210 118 96 74 52 31k

4 103V[iL]

3 2-- 2--
5 42

p
iL

1 67 59 0210 43 84V 1 67 59 0210 43 84V

4 102V[iL]

--3 2-- 2--
5 46

p
iL

4 92V[iL]

-- 53 2-- 2--
5 76

p
iL

4 90V[iL]

---- 53 2-- 2--
5 78

p
iL

Algoritmizace
9/36

Nejdelší rostoucí podposloupnost

A4B33ALG 2015/11

1210 118 96 74 52 31k

1210 118 96 74 52 31k

1 67 59 0210 43 84V

1 67 59 0210 43 84V

4 70V[iL]

-- 5-- 53 2-- 2--
5 98

p
VL

4 90V[iL]

---- 53 2-- 2--
5 78

p
iL 4 50V[iL]

5-- 5-- 53 2-- 2--
5 108

p
iL

1 50V[iL]

5 8-- 5-- 53 2-- 2--
11 108

p
iL

61 50V[iL]

105 8-- 5-- 53 2-- 2--
1211 108

p
iL

Poslední definovaný prvek v iL je indexem posledního prvku

jedné z optimálních podposloupností celé posloupnosti.

Pole p určuje pomocí předchůdců tuto podposloupnost.

Rekonstrukce optimální cesty

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
11/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

...

...

...

...
......

...

...

...

...

...

...

...

...
... ...

...

...

...

...

...

...
... ...

 =

b
a

c

b

1
b

b

1

 =

b operací násobení pro výpočet

jednoho prvku výsledné matice

a * c prvků

ve výsledné matici

a

c

Počet operací v násobení dvou matic

Vynásobení dvou matic o rozměrech ab a bc

vyžaduje celkem a * b * c operací násobení dvou prvků (čísel).

Sčítání zde neuvažujeme, lze pro něj vyvinout analogický postup.

Algoritmizace
12/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

2 * 5 * 4 = 40 op.

5 * 3 * 4 = 60 op.3* 2 * 4 = 24 op.

5 * 3 * 2 = 30 op.

3

5

2

2

4

2

4

3

2

45
3

5

2

4

5
5

3

5

2

3

4

3

4

30 + 24 = 54 op.

Příklad násobení více matic

0 op. 0 op.

()

40 + 60 = 100 op.

()

Algoritmizace
13/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

3

5

2

2

45
A1 = A2 = A3 =

Součin (A1  A2)  A3 vyžaduje 54 operace násobení .

Součin A1  (A2  A3) vyžaduje 100 operací násobení.

Evidentně, na způsobu uzávorkování záleží .

V obecném případě by mělo vyzkoušení všech uzávorkování

exponenciální složitost.

Součin A1  A2  A3  ...  AN lze uzávorkovat

CN = Comb(2N, N) / (N+1) způsoby.

C1, C2, ..., C7, ... = 1, 1, 2, 5, 14, 42, 132, ... CN > 2N pro N > 7.

Catalanova čísla CN

Algoritmizace
14/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

A1  (A2  (A3  (A4  A5)))

A1  (A2  ((A3  A4)  A5))

A1  ((A2  A3)  (A4  A5))

A1  ((A2  (A3  A4))  A5)

A1  (((A2  A3)  A4)  A5)

(A1  A2)  (A3  (A4  A5))

(A1  A2)  ((A3  A4)  A5)

(A1  (A2  A3))  (A4  A5)

((A1  A2)  A3)  (A4  A5)

(A1  (A2  (A3  A4)))  A5

(A1  ((A2  A3)  A4))  A5

((A1  A2)  (A3  A4))  A5

((A1  (A2  A3))  A4)  A5

(((A1  A2)  A3)  A4)  A5

• 14 různých způsobů uzávorkování součinu 5 činitelů

Algoritmizace
15/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

Máme spočítat co nejefektivněji součin reálných matic

A1  A2  A3  A4  A5  A6,

kde rozměry jednotlivých matic jsou po řadě

30  35, 35  15, 15  5, 5  10, 10  20, 20  25.

(Výsledná matice D má rozměr 30  20).

A1 A2 A3 A4 A5 A6 D

     =

Instance úlohy

Grafická podoba (dimenze matic ve správném poměru)

Instance převzata z [CLRS], kap. 15.

Algoritmizace
16/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

A1 A2 A3 A4 A5 A6 D

     =

Sledujeme jen počet operací součinu dvou reálných čísel.

Uvažujeme různé možnosti uzávorkování a tím i pořadí výpočtu.

Výraz Počet operací

58 000A1  ((A2  ((A3  A4)  A5))  A6)

((((A1  A2)  A3)  A4)  A5)  A6 43 500

A1  (A2  (A3  (A4  (A5  A6)))) 47 500

(A1  (A2  A3))  ((A4  A5)  A6) 15 125

metoda

nejhorší

zleva doprava

zprava doleva

nejlepší

Algoritmizace
17/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

A1  (A2  A3  A4 ...  AN-1  AN)

(A1  A2)  (A3  A4 ...  AN-1  AN)

(A1  A2  A3)  (A4 ...  AN-1  AN)

(A1  A2  A3  A4)  (...  AN-1  AN)

(A1  A2  A3  A4  ...)  (AN-1  AN)

(A1  A2  A3  A4  ...  AN-1)  AN

. . .

N − 1 možných míst,

v nichž výraz

rozdělíme

a provedeme

poslední násobení

Předpokládejme, že máme předpočítáno optimální uzávorkování

pro každý modrý úsek celkového výrazu.

Algoritmizace
18/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

A1  (A2  A3  A4 ...  AN-1  AN)

(A1  A2)  (A3  A4 ...  AN-1  AN)

(A1  A2  A3)  (A4 ...  AN-1  AN)

(A1  A2  A3  A4)  (...  AN-1  AN)

(A1  A2  A3  A4  ...)  (AN-1  AN)

(A1  A2  A3  A4  ...  AN-1)  AN

. . .

= B[1,1]  B[2,N]

= B[1,2]  B[3,N]

= B[1,3]  B[4,N]

= B[1,N-2]  B[N-1,N]

= B[1,N-1]  B[N,N]

= B[1,4]  B[5,N]

. . .

Matice B[i, j] představuje výsledek vynásobení odpovídajícího úseku.

Nechť r(X) resp. s(X) představují počet řádků resp sloupců matice X.

Podle pravidel násobení matic platí

r(B[i, j]) = r(Ai), s(B[i, j]) = s(Aj), pro 1 ≤ i ≤ j ≤ N.

Algoritmizace
19/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

Celkem dostáváme MO[1,N]:

MO[1,N] = min {MO[1,k] + r(A1)*s(Ak)*s(AN) + MO[k+1, N] | k = 1..N-1}

B[1,1]  B[2,N]

B[1,2]  B[3,N]

B[1,3]  B[4,N]

B[1,N-2]  B[N-1,N]

B[1,N-1]  B[N,N]

. . .

Nechť MO[i, j] představuje minimální počet operací potřebných

k výpočtu matice B[i, j], tj. minimální počet operací potřebných

k výpočtu matice Ai  Ai+1  ...  Aj-1  Aj.

MO[1,1] + r(A1)*s(A1)*s(AN) + MO[2, N]

MO[1,2] + r(A1)*s(A2)*s(AN) + MO[3, N]

MO[1,3] + r(A1)*s(A3)*s(AN) + MO[4, N]

MO[1,N-2] + r(A1)*s(AN-2)*s(AN) + MO[N-1, N]

MO[1,N-1] + r(A1)*s(AN-1)*s(AN) + MO[N, N]

operací v

pravém úseku

operací v

levém úseku

operací při

násobení

 B[1,.]  B[.,N]

Algoritmizace
20/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

MO[1,N] = min {MO[1,k] + r(A1)*s(Ak)*s(AN) + MO[k+1, N] | k = 1..N-1}

Za předpokladu znalosti MO[i, j] pro úseky kratší než [1, N],

lze řešení celé úlohy, tj. hodnotu MO[1, N], spočíst v čase (N). (*)

Identické úvahy, jaké jsme provedli pro celý výraz

A1  A2  A3  ...  AN ,

provedeme rovněž pro každý jeho souvislý úsek

... AL  AL+1  ...  AR-1  AR ..., 1 ≤ L ≤ R ≤ N.

Počet těchto souvislých úseků je stejný jako počet dvojic indexů

(L, R), kde 1 ≤ L ≤ R ≤ N. Ten je roven Comb(N, 2)  (N2).

Podúlohu na úseku (L, R) lze spočíst podle (*) v čase O(N),

celou úlohu tak lze vyřešit v čase O(N3).

Rekurentní využití řešení menších podúloh

Algoritmizace
21/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

*

*

MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

Hodnoty MO[L,R] ukládáme do 2D pole na pozici s indexy [L][R].

Při výpočtu MO[L,R] podle používáme vesměs hodnoty MO[x,y],

kde rozdíl y - x (odpovídající délce podvýrazu) je menší než

rozdíl R - L.

Tabulku DP proto vyplňujeme v pořadí rostoucích rozdílů R - L.

0. Vyplníme prvky s indexy[L][R], kde R-L = 0, to je hlavní diagonála.

1. Vyplníme prvky s indexy[L][R], kde R-L = 1, to je diagonála

těsně nad hlavní diagonálou.

2. Vyplníme prvky s indexy[L][R], kde R-L = 2, to je diagonála

těsně nad předchozí diagonálou.

...

N-1. Vyplníme prvek s indexem [L][R], kde R-L = N-1, to je pravý

horní roh tabulky.

Algoritmizace
22/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

Stop

R - L = 0 R - L = 1 R - L = 2

R - L = 3 R - L = N-2 R - L = N-1

Schéma postupu výpočtu

Algoritmizace
23/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

3

3

1 2 3 4 5 6 7 8

0

0

0

0

0

0

x

y

z

0 a b c d

0

MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

MO[3,8] = min {

 MO[3,3] + r(A3)*s(A3)*s(A8) + MO[4,8],

 MO[3,4] + r(A3)*s(A4)*s(A8) + MO[5,8],

 MO[3,5] + r(A3)*s(A5)*s(A8) + MO[6,8],

 MO[3,6] + r(A3)*s(A6)*s(A8) + MO[7,8],

 MO[3,7] + r(A3)*s(A7)*s(A8) + MO[8,8]}

Označme P[L, R] := r(AL)*s(AR). Potom

MO[3,8] = min {

 0 + s(A3)*P[3,8] + w,

 a + s(A4)*P[3,8] + x,

 b + s(A5)*P[3,8] + y,

 c + s(A6)*P[3,8] + z,

 d + s(A7)*P[3,8] + 0}.

0

0

0

Ukázka postupu výpočtu

w

MO

2

1

6

5

4

8

7

Algoritmizace
24/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

1 2 3 4 5 6

1 0 15750 7875 9375 11875 15125

2 0 0 2625 4375 7125 10500

3 0 0 0 750 2500 5375

4 0 0 0 0 1000 3500

5 0 0 0 0 0 5000

6 0 0 0 0 0 0

30  35 35  15 15  5 5  10 10  20 20  25 30  25

A1 A2 A3 A4 A5 A6 D

     =

MO

Instance úlohy

optimum

Algoritmizace
25/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

Při určení MO[L,R] do rekonstrukční tabulky RT stejné velikosti jako MO

zaneseme na pozici [L][R] hodnotu k, v níž minimum nastalo.

Hodnota k určuje optimální rozdělení výrazu

(AL  AL+1  ...  AR)

na dva menší optimálně uzávorkované výrazy

(AL  AL+1  ...  Ak)  (Ak+1  Ak+2  ...  AR)

Hodnota RT[1, N] určuje optimální rozdělení celého výrazu

A1  A2  ...  AN
na první dva menší optimálně uzávorkované výrazy

(A1  A2  ...  Ak)  (Ak+1  Ak+2  ...  AN).

Dále rekonstrukce optimálního uzávorkování pokračuje rekurzivně analogicky

pro výraz (A1  A2  ...  Ak) a pro výraz (Ak+1  Ak+2  ...  AN)

a dále pro jejich podvýrazy atd.

*

*

Rekonstrukce uzávorkování

Algoritmizace
26/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

(A1  (A2  A3))  ((A4  A5)  A6) D

     =




1 2 3 4 5 6

1 0 1 1 3 3 3

2 0 0 2 3 3 3

3 0 0 0 3 3 3

4 0 0 0 0 4 5

5 0 0 0 0 0 5

6 0 0 0 0 0 0

RT

A2A1A1 A3

A3A1
A4 A5 A6 A6

A4 A6

A6A1 A1

A1

A2 A3 A4 A5

A6

Algoritmizace
27/36

Optimální pořadí násobení matic

A4B33ALG 2015/11

2 N−1N−2

N−2

N−3

N−3

N−3

1

1

3

2

1

1/2 * (N−1) * N

1/2 * (N−2) * (N−1)

1/2 * (N−3) * (N−2)

1/2 * k * (k+1) N−k

N−4N−5

N−4

21

1

3

2

1

N−k−1N−k−2

1/2 * 3 * 4

1/2 * 2 * 3

1/2 * 1 * 2

1/2 * k * (k+1) = 
N-1

k=1
1/2 * k2 + 

N-1

k=1
1/2 * k 

N-1

k=1

= 1/2 * (N−1) * N * (2N−1)/6 + 1/2 * (N−1) * N/2  (N3)

Počet buněk, z nichž je počítán obsah

dané buňky v DP tabulce, je úměrný

složitosti výpočtu obsahu této buňky.

Řádkové

součty

Celkový

součet

index

řádku

k = N−1

k = N−2

k = 1

k = 2

k = 3

k = k

k = N−3

1

Odvození asymptotické složitosti

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
29/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

C B E A D D E A

D E C D B D A

A:

B:

|A| = 8

|B| = 7

C B E A D D E A

D E C D B D A

A:

B:

C: C D A |C| = 3

C B E A D D E A

D E C D B D A

A:

B:

C: E D D A |C| = 4

Dvě

posloupnosti

Společná

podposloupnost

Nejdelší

společná

podposloupnost

(NSP)

Algoritmizace
30/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

30

A8:

B7:

An: (a1, a2, ..., an)

Bm: (b1, b2, ..., bm)

Ck: (c1, c2, ..., ck)

1 2 83 4 5 6 7

C4:

Ck = LCS(An, Bm)

Rekurzivní pravidla:

(an = bm) ==> (ck = an = bm) & (Ck-1 = LCS (An-1, Bm-1))

C B E A D D E A

D E C D B D A

A8:

B7:

1 2 83 4 5 6 7

C4: E D D A

C B E A D D E A

D E C D B D A

E D D A

A7:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E A

D E C D B D A

E D D A

Algoritmizace
31/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

(an != bm) & (ck != an) ==> (Ck = LCS (An-1, Bm))

A7:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E

D E C D B D

E D D

A6:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E

D E C D B D

E D D

A5:

B5:

1 2 83 4 5 6 7

C2:

C B E A D

D E C D B

E D

A5:

B4:

1 2 83 4 5 6 7

C2:

C B E A D

D E C D B

E D

(an != bm) & (ck != bm) ==> (Ck = LCS (An, Bm-1))

31

Algoritmizace
32/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

Rekurzivní funkce – délka LCS

C(n,m) =

0

C(n-1, m-1) +1

n = 0 or m = 0

n > 0, m > 0, an = bm

n > 0, m > 0, an ≠ bm max{ C(n-1, m), C(n, m-1) }

Strategie dynamického programování

C[n][m]

n

m

for(a=1; a<=n; a++)

 for(b=1; b<=m; b++)

 C[a][b] = ;

}

Algoritmizace
33/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

Konstrukce DP tabulek pro LCS

void findLCS() {

 for(int a=1; a<=n; a++)

 for(int b=1; b<=m; b++)

 if(A[a] == B[b]) {

 C[a][b] = C[a-1][b-1]+1;

 arrows[a][b] = DIAG;

 }

 else

 if(C[a-1][b] > C[a][b-1]) {

 C[a][b] = C[a-1][b];

 arrows[a][b] = UP;

 }

 else {

 C[a][b] = C[a][b-1];

 arrows[a][b] = LEFT;

 } }

Algoritmizace
34/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

3 4 5 6 71 2

C

B

E

A

D

D

E

A

0

0

0

0

0

0

1

1

1

1

1

2

1

2

1

2

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

3

0

0

1

1

1

1

1

1

2

2

2

2

3

3

3

3

0

0

1

1

2

2

2

2

2

2

2

2

3

3

3

4

0 0 0 0 0 0 0 0

1

2

3

4

5

6

7

8

0

C D B D AD E

0
C

A:

B:

Pole

NSP

pro

“CBEADDEA”

a

“DECDBDA”

Algoritmizace
35/36

Nejdelší společná podposloupnost

A4B33ALG 2015/11

void outLCS(int a, int b) {

if(a ==0 || b == 0) return;

if(arrows[a][b] == DIAG) {

 outLCS(a-1, b-1); // recursion ...

 print(A[a]); // ... reverses the sequence!

 }

else

 if(arrows[a][b] == UP)

 outLCS(a-1,b);

 else

 outLCS(a,b-1);

}

Výpis NSP -- rekurzivně :)

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Nejdelší rostoucí podposloupnost
	Snímek 5: Nejdelší rostoucí podposloupnost
	Snímek 6: Nejdelší rostoucí podposloupnost
	Snímek 7: Nejdelší rostoucí podposloupnost
	Snímek 8: Nejdelší rostoucí podposloupnost
	Snímek 9: Nejdelší rostoucí podposloupnost
	Snímek 10
	Snímek 11: Optimální pořadí násobení matic
	Snímek 12: Optimální pořadí násobení matic
	Snímek 13: Optimální pořadí násobení matic
	Snímek 14: Optimální pořadí násobení matic
	Snímek 15: Optimální pořadí násobení matic
	Snímek 16: Optimální pořadí násobení matic
	Snímek 17: Optimální pořadí násobení matic
	Snímek 18: Optimální pořadí násobení matic
	Snímek 19: Optimální pořadí násobení matic
	Snímek 20: Optimální pořadí násobení matic
	Snímek 21: Optimální pořadí násobení matic
	Snímek 22: Optimální pořadí násobení matic
	Snímek 23: Optimální pořadí násobení matic
	Snímek 24: Optimální pořadí násobení matic
	Snímek 25: Optimální pořadí násobení matic
	Snímek 26: Optimální pořadí násobení matic
	Snímek 27: Optimální pořadí násobení matic
	Snímek 28
	Snímek 29: Nejdelší společná podposloupnost
	Snímek 30: Nejdelší společná podposloupnost
	Snímek 31: Nejdelší společná podposloupnost
	Snímek 32: Nejdelší společná podposloupnost
	Snímek 33: Nejdelší společná podposloupnost
	Snímek 34: Nejdelší společná podposloupnost
	Snímek 35: Nejdelší společná podposloupnost
	Snímek 36

