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Přehled
◼ Dynamické programování (DP)

 Nejdelší rostoucí podposloupnost

 Optimální pořadí násobení matic 

 Nejdelší  společná podposloupnost

3* 2 * 4 = 24 op.

5 * 3 * 2 = 30 op.
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Nejdelší rostoucí podposloupnost 

Z dané posloupnosti vyberte co nejdelší rostoucí podposloupnost.

5      4     9    11     5     3     2    10     0     8     6     1     7 

Řešení:  4   5   6   7

Vlastnosti hledané podposloupnosti:

Klesající,    nerostoucí,     neklesající,    aritmetická, 

s omezenou rychlostí růstu,    s váhami prvků, ... atd., ...

Převeď na známou úlohu, definuj vhodný DAG podle daných 

vlastností podposloupnosti, v DAG hledej nejdelší cestu. 

Koncepční přístup I

zde neprobírané

Jiné možné varianty
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Nejdelší rostoucí podposloupnost 

Prvky posloupnosti budou uzly DAG, který je již topologicky 

uspořádán, pořadí v posloupnosti = pořadí v top. uspořádání. 

Hrana x --> y existuje právě tehdy, 

když x je v posloupnosti dříve než y a navíc x<y. 

Transformace na známou úlohu

5 4 11 5 3 2 10 0 8 6 1 79

Algoritmus je znám, má složitost (N+M) , tedy O(N2).

Např. pro rostoucí posloupnost má složitost až (N2). 

V tomto DAG hledáme nejdelší cestu.

Koncepční přístup  I

A4B33ALG  2015/11 



Algoritmizace
6/36

Nejdelší rostoucí podposloupnost 

A4B33ALG  2015/11 

k   .. index prvku

V[k] .. hodnota prvku

p[k] .. index předchůdce prvku

iL[d] .. index posledního prvku 

v rostoucí podposloupnosti

délky d = 1, 2, ..., N.

2 78 610 1311 54 95

--

--

1210 118 96 74 52 31k

V

p

iL

Registrujme optimální podposloupnosti (OPP) všech možných délek.

OPP každé délky má co nejmenší možný poslední prvek.

To ji dává potenciál budoucího růstu.

Postupně metodou DP aktualizujme tyto optimální podposloupnosti.  

Koncepční přístup II - sestav nezávislý a rychlejší algoritmus

Pro každý index k:

Nechť d je index největšího prvku, pro který platí V[iL[d]] < V[k].

Potom iL[d+1] := k, p[k] = iL[d], pokud d existuje.

Jinak iL[1] := k, p[k] = null.

  V[iL[d]], d = 1..N  je neklesající, lze v ní hledat v čase O(log N).
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Nejdelší rostoucí podposloupnost 
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Pro každý index k:

   Nechť d je index max. prvku, 

pro který platí 

V[iL[d]] < V[k].

   Potom iL[d+1] := k, p[k] = iL[d],  

pokud d existuje.

   Jinak iL[1] := k, p[k] = null. 

1 67 59 0210 43 84

1210 118 96 74 52 31k

V

1 50V[iL]

5 8-- 5-- 53 2-- 2--
11 108

p
iL

61 50V[iL]

105 8-- 5-- 53 2-- 2--
1211 108

p
iL

k = 11

k = 12

Pro každé k nalezneme  d  v čase O(log N) půlením intervalu.

Aktualizace iL a p proběhne v konstantním čase.

Celkem je složitost O(N log (N)).

k   .. index prvku

V[k] .. hodnota prvku

p[k] .. index předchůdce prvku

iL[d] .. index posledního prvku 

v rostoucí podposloupnosti

délky d = 1, 2, ..., N.
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Nejdelší rostoucí podposloupnost 
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4V[iL]

--
1

1210 118 96 74 52 31k

p
iL

3V[iL]

----
2

p
iL

83V[iL]

-- 2--
32

p
iL

8 103V[iL]

3-- 2--
3 42

p
iL

1210 118 96 74 52 31k

4 103V[iL]

3 2-- 2--
5 42

p
iL

1 67 59 0210 43 84V 1 67 59 0210 43 84V

4 102V[iL]

--3 2-- 2--
5 46

p
iL

4 92V[iL]

-- 53 2-- 2--
5 76

p
iL

4 90V[iL]

---- 53 2-- 2--
5 78

p
iL
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Nejdelší rostoucí podposloupnost 
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1210 118 96 74 52 31k

1210 118 96 74 52 31k

1 67 59 0210 43 84V

1 67 59 0210 43 84V

4 70V[iL]

-- 5-- 53 2-- 2--
5 98

p
VL

4 90V[iL]

---- 53 2-- 2--
5 78

p
iL 4 50V[iL]

5-- 5-- 53 2-- 2--
5 108

p
iL

1 50V[iL]

5 8-- 5-- 53 2-- 2--
11 108

p
iL

61 50V[iL]

105 8-- 5-- 53 2-- 2--
1211 108

p
iL

Poslední definovaný prvek v iL je indexem posledního prvku

jedné z optimálních podposloupností celé posloupnosti.

Pole p určuje pomocí předchůdců tuto podposloupnost.  

Rekonstrukce optimální cesty
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Optimální pořadí násobení matic 
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b  operací násobení pro výpočet 

jednoho prvku výsledné matice

a * c  prvků 

ve výsledné matici

a

c

Počet operací v násobení dvou matic

Vynásobení dvou matic o rozměrech ab   a   bc 

vyžaduje celkem   a * b * c operací násobení dvou prvků (čísel).

Sčítání zde neuvažujeme, lze pro něj vyvinout analogický postup.
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2 * 5 * 4 = 40 op.

5 * 3 * 4 = 60 op.3* 2 * 4 = 24 op.

5 * 3 * 2 = 30 op.
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30 + 24 = 54 op.

Příklad násobení více matic

0 op. 0 op.

( )

40 + 60 = 100 op.

( )
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Optimální pořadí násobení matic 
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3

5

2

2

45
A1 = A2 = A3 = 

Součin    (A1  A2)  A3 vyžaduje 54 operace násobení . 

Součin  A1  (A2  A3)    vyžaduje 100 operací násobení. 

Evidentně, na způsobu uzávorkování záleží . 

V obecném případě by mělo vyzkoušení všech uzávorkování

exponenciální složitost. 

Součin  A1  A2  A3  ...  AN lze uzávorkovat  

CN  = Comb(2N, N) / (N+1) způsoby.

C1, C2, ..., C7, ... =  1, 1, 2, 5, 14, 42, 132, ... CN  > 2N pro N > 7. 

Catalanova čísla  CN
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Optimální pořadí násobení matic 

A4B33ALG  2015/11 

A1  (A2  (A3  (A4  A5)))

A1  (A2  ((A3  A4)  A5))

A1  ((A2  A3)  (A4  A5))

A1  ((A2  (A3  A4))  A5)

A1  (((A2  A3)  A4)  A5)

(A1  A2)  (A3  (A4  A5))

(A1  A2)  ((A3  A4)  A5)

(A1  (A2  A3))  (A4  A5)

((A1  A2)  A3)  (A4  A5)

(A1  (A2  (A3  A4)))  A5 

(A1  ((A2  A3)  A4))  A5 

((A1  A2)  (A3  A4))  A5 

((A1  (A2  A3))  A4)  A5 

(((A1  A2)  A3)  A4)  A5 

• 14 různých způsobů uzávorkování součinu 5 činitelů 
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Optimální pořadí násobení matic 
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Máme spočítat co nejefektivněji součin reálných matic

A1  A2  A3  A4  A5  A6,

kde rozměry jednotlivých matic jsou po řadě

30  35, 35  15, 15  5, 5  10, 10  20, 20  25.

(Výsledná matice D má rozměr 30  20).

 

A1 A2 A3 A4 A5 A6 D 

     =

Instance  úlohy 

Grafická podoba (dimenze matic ve správném poměru) 

Instance převzata z [CLRS], kap. 15.
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Optimální pořadí násobení matic 
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A1 A2 A3 A4 A5 A6 D 

     =

Sledujeme jen počet operací součinu dvou reálných čísel. 

Uvažujeme různé možnosti uzávorkování a tím i pořadí výpočtu.

 

Výraz Počet operací 

58 000A1  ((A2  ((A3  A4)  A5))  A6)

((((A1  A2)  A3)  A4)  A5)  A6 43 500

A1  (A2  (A3  (A4  (A5  A6)))) 47 500

(A1  (A2  A3))  ((A4  A5)  A6) 15 125

metoda 

nejhorší

zleva doprava

zprava doleva

nejlepší
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Optimální pořadí násobení matic 
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A1  (A2  A3   A4  ...   AN-1  AN)

(A1  A2)  (A3   A4  ...   AN-1  AN)

(A1  A2  A3)  (A4 ...   AN-1  AN)

(A1  A2  A3  A4)  ( ...  AN-1  AN)

(A1  A2  A3  A4   ...)  (AN-1  AN)

(A1  A2  A3  A4   ...   AN-1)  AN

. . .

N − 1 možných míst, 

v nichž výraz 

rozdělíme 

a provedeme 

poslední násobení

Předpokládejme, že máme předpočítáno optimální uzávorkování

pro každý modrý úsek celkového výrazu.
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Optimální pořadí násobení matic 
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A1  (A2  A3   A4  ...   AN-1  AN)

(A1  A2)  (A3   A4  ...   AN-1  AN)

(A1  A2  A3)  (A4 ...   AN-1  AN)

(A1  A2  A3  A4)  ( ...  AN-1  AN)

(A1  A2  A3  A4   ...)  (AN-1  AN)

(A1  A2  A3  A4   ...   AN-1)  AN

. . .

= B[1,1]    B[2,N] 

= B[1,2]    B[3,N] 

= B[1,3]    B[4,N] 

= B[1,N-2]   B[N-1,N] 

= B[1,N-1]   B[N,N] 

= B[1,4]    B[5,N] 

. . .

Matice B[i, j] představuje výsledek vynásobení odpovídajícího úseku.

Nechť r(X) resp. s(X) představují počet řádků resp sloupců matice X.

Podle pravidel násobení matic platí

r(B[i, j]) = r(Ai), s(B[i, j]) = s(Aj),   pro 1 ≤ i ≤ j ≤ N. 
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Celkem dostáváme MO[1,N]: 

MO[1,N] = min {MO[1,k] + r(A1)*s(Ak)*s(AN) + MO[k+1, N] |  k = 1..N-1}

B[1,1]    B[2,N] 

B[1,2]    B[3,N] 

B[1,3]    B[4,N] 

B[1,N-2]   B[N-1,N] 

B[1,N-1]   B[N,N] 

. . .

Nechť MO[i, j] představuje minimální počet operací potřebných 

k výpočtu matice B[i, j], tj. minimální  počet operací potřebných 

k výpočtu matice  Ai  Ai+1  ...  Aj-1  Aj. 

MO[1,1]  +  r(A1)*s(A1)*s(AN)  +  MO[2, N] 

MO[1,2]  +  r(A1)*s(A2)*s(AN)  +  MO[3, N] 

MO[1,3]  +  r(A1)*s(A3)*s(AN)  +  MO[4, N] 

MO[1,N-2]  +  r(A1)*s(AN-2)*s(AN) +  MO[N-1, N] 

MO[1,N-1]  +  r(A1)*s(AN-1)*s(AN) +  MO[N, N] 

operací v

pravém úseku

 

operací v 

levém úseku 

operací při 

násobení

 B[1,.]  B[.,N]
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MO[1,N] = min {MO[1,k] + r(A1)*s(Ak)*s(AN) + MO[k+1, N] | k = 1..N-1}

Za předpokladu znalosti MO[i, j] pro úseky kratší než [1, N],

lze řešení celé úlohy, tj. hodnotu MO[1, N], spočíst v čase (N). (*)

Identické úvahy, jaké jsme provedli pro celý výraz 

A1  A2  A3  ...  AN ,

provedeme rovněž pro každý jeho souvislý úsek  

... AL  AL+1  ...  AR-1  AR ...,  1 ≤ L ≤ R ≤ N. 

Počet těchto souvislých úseků je stejný jako počet dvojic indexů 

(L, R), kde 1 ≤ L ≤ R ≤ N. Ten je roven Comb(N, 2)  (N2).

Podúlohu na úseku (L, R) lze spočíst podle (*) v čase O(N), 

celou úlohu tak lze vyřešit v čase O(N3).

Rekurentní využití řešení menších podúloh
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Optimální pořadí násobení matic 

A4B33ALG  2015/11 

*

*

MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

Hodnoty MO[L,R] ukládáme do 2D pole na pozici s indexy [L][R].

Při výpočtu MO[L,R] podle       používáme vesměs hodnoty MO[x,y], 

kde rozdíl  y - x  (odpovídající délce podvýrazu) je menší než 

rozdíl R - L.

Tabulku DP proto vyplňujeme v pořadí rostoucích rozdílů R - L.

0. Vyplníme prvky s indexy[L][R], kde R-L = 0, to je hlavní diagonála.

1. Vyplníme prvky s indexy[L][R], kde R-L = 1, to je diagonála

těsně nad hlavní diagonálou.

2. Vyplníme prvky s indexy[L][R], kde R-L = 2, to je diagonála

těsně nad předchozí diagonálou.

...

N-1. Vyplníme prvek s indexem [L][R], kde R-L = N-1, to je pravý 

horní roh tabulky.



Algoritmizace
22/36

Optimální pořadí násobení matic 

A4B33ALG  2015/11 

Stop

R - L = 0 R - L = 1 R - L = 2

R - L = 3 R - L = N-2 R - L = N-1

Schéma postupu výpočtu 
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3

3

1    2   3   4   5   6   7   8

0

0

0

0

0

0

x

y

z

0 a b c d

0

MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

MO[3,8] = min {

  MO[3,3] + r(A3)*s(A3)*s(A8) + MO[4,8],

  MO[3,4] + r(A3)*s(A4)*s(A8) + MO[5,8],

  MO[3,5] + r(A3)*s(A5)*s(A8) + MO[6,8],

  MO[3,6] + r(A3)*s(A6)*s(A8) + MO[7,8],

  MO[3,7] + r(A3)*s(A7)*s(A8) + MO[8,8]} 

Označme P[L, R] := r(AL)*s(AR). Potom

MO[3,8] = min { 

  0 + s(A3)*P[3,8] + w,

  a + s(A4)*P[3,8] + x,

  b + s(A5)*P[3,8] + y,

  c + s(A6)*P[3,8] + z,

  d + s(A7)*P[3,8] + 0}.

0

0

0

Ukázka postupu výpočtu 

w

MO

2

1

6

5

4

8

7
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1     2      3      4      5      6  

 

1 0  15750   7875   9375  11875  15125 

2 0      0   2625   4375   7125  10500 

3 0      0      0    750   2500   5375 

4 0      0      0      0   1000   3500 

5 0      0      0      0      0   5000 

6 0      0      0      0      0      0 

30  35           35  15  15  5  5  10    10  20           20  25          30  25

A1 A2 A3 A4 A5 A6 D 

     =

MO

Instance  úlohy 

optimum
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MO[L,R] = min {MO[L,k] + r(AL)*s(Ak)*s(AR) + MO[k+1,R] | k = L..R-1}

Při určení  MO[L,R] do  rekonstrukční tabulky RT stejné velikosti jako MO

zaneseme na pozici [L][R] hodnotu k, v níž  minimum nastalo.

Hodnota k určuje optimální rozdělení výrazu

(AL  AL+1  ...   AR)

na dva menší optimálně uzávorkované výrazy

(AL  AL+1  ...  Ak)   (Ak+1  Ak+2  ...  AR)

Hodnota RT[1, N] určuje optimální  rozdělení celého výrazu 

A1  A2  ...   AN
na první dva menší optimálně uzávorkované výrazy 

(A1  A2  ...  Ak)   (Ak+1  Ak+2  ...  AN). 

Dále rekonstrukce optimálního uzávorkování pokračuje rekurzivně analogicky

pro výraz (A1  A2  ...  Ak)  a pro výraz  (Ak+1  Ak+2  ...  AN)

a dále pro jejich podvýrazy atd. 

*

*

Rekonstrukce uzávorkování 
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(A1    (A2  A3))  ((A4  A5)  A6) D 

     =




1      2      3     4     5     6  

 

1    0      1      1     3     3     3 

2    0      0      2     3     3     3 

3    0      0      0     3     3     3 

4    0      0      0     0     4     5 

5    0      0      0     0     0     5 

6    0      0      0     0     0     0 

RT

A2A1A1 A3

A3A1
A4 A5 A6 A6

A4 A6

A6A1 A1

A1

A2 A3 A4 A5

A6
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2 N−1N−2

N−2

N−3

N−3

N−3

1

1

3

2

1

1/2 * (N−1) * N

1/2 * (N−2) * (N−1)

1/2 * (N−3) * (N−2)

1/2 * k * (k+1) N−k

N−4N−5

N−4

21

1

3

2

1

N−k−1N−k−2

1/2 * 3 * 4

1/2 * 2 * 3

1/2 * 1 * 2

1/2 * k * (k+1) =    
N-1

k=1
1/2 * k2   +   

N-1

k=1
1/2 * k     

N-1

k=1

=   1/2 * (N−1) * N * (2N−1)/6  + 1/2 * (N−1) * N/2    (N3)  

Počet buněk, z nichž je počítán obsah 

dané buňky v DP tabulce, je úměrný 

složitosti výpočtu obsahu této buňky. 

Řádkové 

součty 

Celkový 

součet 

index 

řádku

k = N−1

k = N−2

k = 1

k = 2

k = 3

k = k

k = N−3

1

Odvození asymptotické složitosti 
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C B E A D D E A 

D E C D B D A 

A:

B:

|A| = 8

|B| = 7

C B E A D D E A 

D E C D B D A 

A:

B:

C: C D A |C| = 3

C B E A D D E A 

D E C D B D A 

A:

B:

C: E D D A |C| = 4

Dvě 

posloupnosti

Společná

podposloupnost

Nejdelší

společná

podposloupnost

(NSP)
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30

A8:

B7:

An:   (a1, a2, ..., an)

Bm:  (b1, b2, ..., bm)

Ck:   (c1, c2, ..., ck)

1 2 83 4 5 6 7

C4:

Ck  =  LCS(An, Bm)

Rekurzivní pravidla:

( an = bm )   ==>  (ck = an = bm)  &  (Ck-1 = LCS (An-1, Bm-1) )   

C B E A D D E A 

D E C D B D A 

A8:

B7:

1 2 83 4 5 6 7

C4: E D D A 

C B E A D D E A 

D E C D B D A 

E D D A 

A7:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E A 

D E C D B D A 

E D D A 
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( an != bm )  &  (ck != an )  ==>  (Ck = LCS (An-1, Bm) )   

A7:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E 

D E C D B D 

E D D 

A6:

B6:

1 2 83 4 5 6 7

C3:

C B E A D D E 

D E C D B D 

E D D 

A5:

B5:

1 2 83 4 5 6 7

C2:

C B E A D   

D E C D B  

E D  

A5:

B4:

1 2 83 4 5 6 7

C2:

C B E A D 

D E C D B 

E D  

( an != bm )  &  (ck != bm )  ==>  (Ck = LCS (An, Bm-1) )   

31
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Rekurzivní funkce – délka  LCS 

C(n,m) =    

0    

C(n-1, m-1) +1    

n = 0  or  m = 0    

n > 0, m > 0, an = bm   

n > 0, m > 0, an ≠ bm   max{ C(n-1, m), C(n, m-1) }    

Strategie dynamického programování    

C[n][m]     

n    

m    

for( a=1; a<=n; a++ )

  for( b=1; b<=m; b++ )

    C[a][b] = .... ;

}
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Konstrukce DP tabulek pro LCS 

void findLCS() {

  for( int a=1; a<=n; a++ )

    for( int b=1; b<=m; b++ )

      if( A[a] == B[b] ) {

         C[a][b] = C[a-1][b-1]+1;

         arrows[a][b] = DIAG;

         }

      else

        if( C[a-1][b] > C[a][b-1] ) {

           C[a][b] = C[a-1][b];

           arrows[a][b] = UP;

        }

        else {

          C[a][b] = C[a][b-1];

          arrows[a][b] = LEFT;

 }      }
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3 4 5 6 71 2

C

B

E

A

D

D

E

A

0

0

0

0 

0

0

1

1

1

1

1

2

1

2

1

2

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

3

0

0

1

1

1

1

1

1

2

2

2

2

3

3

3

3

0

0

1

1

2

2

2

2

2

2

2

2

3

3

3

4

0 0 0 0 0 0 0 0

1

2

3

4

5

6

7

8

0

C D B D AD E

0
C    

A:

B:

Pole

NSP

pro

“CBEADDEA”

a

“DECDBDA”
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void outLCS( int a, int b ) {

if( a ==0 || b == 0 ) return;

if( arrows[a][b]  == DIAG ) {

    outLCS(a-1, b-1);      // recursion ...

    print(A[a]);           // ... reverses the sequence!

    }

else

    if( arrows[a][b] == UP ) 

        outLCS(a-1,b);

    else 

        outLCS(a,b-1);

}

Výpis NSP -- rekurzivně :)
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