
Algoritmizace
1/43

Algoritmizace

Daniel Průša, Robert Pěnička

2025

Algoritmizace
2/43

Přehled
◼ Dynamické programování (DP)

 Optimální binární vyhledávací strom

 Úloha batohu neomezená

 Úloha batohu 0/1

91416
30 30

14

16 14

14

14

9
9

Join at slido.com

#1189108

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
4/43

Optimální binární vyhledávací strom

IrmaCole

Ben

Ann Edna

Fred Jack

Ken Mark

Hugo

Gene

Nick

Orrie

0.05

Dana Lea

0.08

0.01

0.04

0.09

0.03

0.02 0.010.06 0.150.04 0.220.03 0.12

Klíč

Pravděpodobnost dotazu

0.05

Vyvážený, ale ne optimální

Algoritmizace
5/43

Optimální binární vyhledávací strom

Fred

Hugo

Gene

0.05

Dana
0.01

0.04

0.22 hloubka

2

1

3

4

cena uzlu = průměrný počet testů na nalezení uzlu

při jednom dotazu (Find)

0.04  1

0.01  2

0.05  3

0.22  4

= 0.04

= 0.02

= 0.15

= 0.88

cena uzlu =

pravděpodobnost  hloubka

Cena jednotlivých uzlů v BVS

Algoritmizace
6/43

Cena vyváženého BVS

Ben

Cole

Dana

Edna

Fred

Gene

Hugo

Irma

Lea

Jack

Ken

Mark

Nick

Orrie

Ann

klíč pravděp. pk hloubka dk pk  dk

Cena celkem: 3.47

0.08

0.12

0.01

0.04

0.05

0.22

0.04

0.06

0.09

0.05

0.15

0.02

0.03

0.03

0.01

 3 = 0.24

 4 = 0.48

 2 = 0.02

 4 = 0.16

 3 = 0.15

 4 = 0.88

 1 = 0.04

 4 = 0.24

 2 = 0.18

 3 = 0.15

 4 = 0.60

 4 = 0.08

 3 = 0.09

 4 = 0.12

 4 = 0.04

3

4

2

4

3

4

1

4

2

3

4

4

3

4

4

0.08

0.12

0.01

0.04

0.05

0.22

0.04

0.06

0.09

0.05

0.15

0.02

0.03

0.03

0.01

Cena celkem = prům. poč. testů na jednu operaci Find.

Algoritmizace
7/43

Optimální binární vyhledávací strom

Mark

0.02

Orrie

Fred
0.05

Ben
0.08

Dana

Hugo

0.22

Lea

0.15

Nick

0.09

0.01

Irma

0.04

Jack

0.05

Edna
0.04

Gene

Ann

0.03

Cole

0.01

Ken

0.06

0.12

0.03

Struktura optimálního BVS s danými pravděpodobnostmi

7

Algoritmizace
8/43

Cena optimálního BVS

Ben

Cole

Dana

Edna

Fred

Gene

Hugo

Irma

Lea

Jack

Ken

Mark

Nick

Orrie

Ann

klíč pravděp. pk hloubka dk pk  dk

Cena celkem 2.56

0.08

0.12

0.01

0.04

0.05

0.22

0.04

0.06

0.09

0.05

0.15

0.02

0.03

0.03

0.01

 3 = 0.24

 2 = 0.24

 5 = 0.05

 4 = 0.16

 3 = 0.15

 1 = 0.22

 4 = 0.16

 3 = 0.18

 3 = 0.27

 4 = 0.20

 2 = 0.30

 5 = 0.10

 4 = 0.12

 4 = 0.12

 5 = 0.05

3

2

5

4

3

1

4

3

3

4

2

5

4

4

5

0.08

0.12

0.01

0.04

0.05

0.22

0.04

0.06

0.09

0.05

0.15

0.02

0.03

0.03

0.01

Zrychlení 3.47 : 2.56 = 1 : 0.74

Jak by šlo hledání

optimálního BVS rozdělit

na podúlohy?

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
10/43

Výpočet ceny optimálního BVS

Xyz

pk

C2k

C1k

k+1 RL k-1 k

cena levého podstromu uzlu kC1k

Cena pravého podstromu uzlu kC2k

R


i=k+1

pi Cena = C1k + +

k-1


i=L

pi + C2k + pk

pk

Rekurzivní myšlenka

Algoritmizace
11/43

Výpočet ceny optimálního BVS

1 2 L N R

Nad prvky s indexy od L do R

lze jistě vytvořit jeden optimální podstrom.

Máme N optimalních podstromů velikosti 1

1 podstrom N

2N-1

N-2 3

Celkem máme N * (N+1) /2 různých optimálních podstromů.

Velikost stromu

 = poč. uzlů

 = L-R+1

Malé

optimální

podstromy

Algoritmizace
12/43

Minimalizace ceny BVS

2. Zkus: k = L, L+1, L+2, ..., R

1. Předpoklad : Všechny menší optimální stromy jsou známy.

Idea rekurzivního řešení:

3. Zaregistruj index k, který minimalizuje cenu, tj. hodnotu

R


i=k+1

pi C1k + +

k-1


i=L

pi + C2k + pk

4. Klíč s indexem k je kořenem optimálního stromu.

k=L k=L+1 k=L+2 … ... k=R

Algoritmizace
13/43

Minimalizace ceny BVS

C(L,R) = min { C(L, k-1) + 
i=L

k-1

pi 
i=k+1

R

pi + C(k+1,R) +
L  k  R

+ pk } =

min { C(L, k-1) + 
i=L

R

pi C(k+1,R) +
L  k  R

} =

min { C(L, k-1) + 
i=L

R

pi C(k+1,R) } +
L  k  R

=

=

C(L,R) Cena optimálního podstromu obsahujícího klíče

 s indexy L, L+1, L+2, ..., R-1, R

Hodnota k minimalizující (*) je indexem kořenu optim. podstromu.

(*)

Algoritmizace
14/43

Datové struktury pro výpočet optmálního BVS

Ceny optimálních podstromů

pole C [L][R] (L ≤ R)

Kořeny optimálních podstromů

 pole roots [L][R] (L ≤ R)

L

R

0

1 2 3 4 N

3

1
2

N+1

L

R

0

3

1
2

N+1

L ≤ R L ≤ R

diagonála ... L= R diagonála ... L= R

Algoritmizace
15/43

Výpočet optimálního BVS

p5

p4

p3

p1

p6

p7

p8

p9

p2

pN

0

a b c d e

x

y

z

t

w

L=3, R=9

Cena konkrétního optimálního podstromu


i=L

R

pi +

L  k  R

C(L,R) =

 min { C(L, k-1) + C(k+1,R) }

C(L,R) = min{ 0+x, p3+y, a+z, b+t,

 c+w, d+p9, e+0 }


R

pi +
i=L

Algoritmizace
16/43

Výpočet optimálního BVS

Strategie DP

– nejprve se zpracují nejmenší podstromy, pak větší, atd…

Stop

Algoritmizace
17/43

Výpočet optimálního BVS

void optimalTree() {

 int L, R; double min;

 // size = 1

 for(i=0; i<=N; i++) {

 C[i][i] = pravděpodobnost[i]; roots[i][i] = i;

 // size > 1

 for(int size = 2; size <= N; size++) {

 L = 1; R = size;

 while(R <= N) {

 C[L][R] = min(C[L][k-1]+C[k+1][R], k = L..R);

 roots[L][R] = ‘k minimalizující předch. řádek’;

 C[L][R] += sum(C[i][i], i = L..R);

 L++; R++;

} } }

Výpočet DP tabulek cen a kořenů

Algoritmizace
18/43

Výpočet optimálního BVS

void buildTree(int L, int R) {

 if (R < L) return;

 int keyIndex = roots[L][R];

 // keys ... sorted array of keys

 int key = keys[roots[L][R]];

 insert(root, key); // standard BST insert

 buildTree(L, keyIndex -1);

 buildTree(keyIndex +1, R);

}

Vybudování optimálního stromu pomocí

rekonstrukční tabulky kořenů

Algoritmizace
19/43

Výpočet optimálního BVS

0 1 2 3 3 3 3 3 7 7 7 7 7 7 7 7

0 0 2 3 3 3 3 7 7 7 7 7 7 7 7 7

0 0 0 3 3 3 3 7 7 7 7 7 7 7 7 7

0 0 0 0 4 5 6 7 7 7 7 7 7 7 7 7

0 0 0 0 0 5 6 7 7 7 7 7 7 7 7 7

0 0 0 0 0 0 6 7 7 7 7 7 7 7 11 11

0 0 0 0 0 0 0 7 7 7 7 7 11 11 11 11

0 0 0 0 0 0 0 0 8 9 9 11 11 11 11 11

0 0 0 0 0 0 0 0 0 9 9 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 10 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 0 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 0 0 12 12 12 12

0 0 0 0 0 0 0 0 0 0 0 0 0 13 14 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kořeny optimálních podstromů

Algoritmizace
20/43

Výpočet optimálního BVS

0 1 2 3 3 3 3 3 7 7 7 7 7 7 7 7

0 0 2 3 3 3 3 7 7 7 7 7 7 7 7 7

0 0 0 3 3 3 3 7 7 7 7 7 7 7 7 7

0 0 0 0 4 5 6 7 7 7 7 7 7 7 7 7

0 0 0 0 0 5 6 7 7 7 7 7 7 7 7 7

0 0 0 0 0 0 6 7 7 7 7 7 7 7 11 11

0 0 0 0 0 0 0 7 7 7 7 7 11 11 11 11

0 0 0 0 0 0 0 0 8 9 9 11 11 11 11 11

0 0 0 0 0 0 0 0 0 9 9 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 10 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 0 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 0 0 12 12 12 12

0 0 0 0 0 0 0 0 0 0 0 0 0 13 14 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Korespondence stromů

Mark

0.02

Orrie

Fred

0.05

Ben

0.08

Dana

Hugo

0.22

Lea

0.15

Nick

0.09

0.01

Irma

0.04

Jack

0.05

Edna

0.04

Gene

Ann

0.03

Cole

0.01

Ken

0.06

0.12

0.03

Algoritmizace
21/43

Výpočet optimálního BVS

1-A 2-B 3-C 4-D 5-E 6-F 7-G 8-H 9-I 10-J 11-K 12-L 13-M 14-N 15-O

 1-A 0.03 0.14 0.37 0.39 0.48 0.63 1.17 1.26 1.42 1.57 2.02 2.29 2.37 2.51 2.56

 2-B 0 0.08 0.28 0.30 0.39 0.54 1.06 1.14 1.30 1.45 1.90 2.17 2.25 2.39 2.44

 3-C 0 0 0.12 0.14 0.23 0.38 0.82 0.90 1.06 1.21 1.66 1.93 2.01 2.15 2.20

 4-D 0 0 0 0.01 0.06 0.16 0.48 0.56 0.72 0.87 1.32 1.59 1.67 1.81 1.86

 5-E 0 0 0 0 0.04 0.13 0.44 0.52 0.68 0.83 1.28 1.55 1.63 1.77 1.82

 6-F 0 0 0 0 0 0.05 0.32 0.40 0.56 0.71 1.16 1.43 1.51 1.63 1.67

 7-G 0 0 0 0 0 0 0.22 0.30 0.46 0.61 1.06 1.31 1.37 1.48 1.52

 8-H 0 0 0 0 0 0 0 0.04 0.14 0.24 0.54 0.72 0.78 0.89 0.93

 9-I 0 0 0 0 0 0 0 0 0.06 0.16 0.42 0.60 0.66 0.77 0.81

10-J 0 0 0 0 0 0 0 0 0 0.05 0.25 0.43 0.49 0.60 0.64

11-K 0 0 0 0 0 0 0 0 0 0 0.15 0.33 0.39 0.50 0.54

12-L 0 0 0 0 0 0 0 0 0 0 0 0.09 0.13 0.21 0.24

13-M 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.09

14-N 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0.05

15-O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01

Ceny optimálních podstromů

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
23/43

Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2, ..., N)

a batoh s kapacitou váhy K.

Máme naložit batoh těmito předměty tak,

aby kapacita K nebyla překročena a obsah měl maximální cenu.

Neomezená varianta -- Každý předmět lze použít libovolněkrát.

0/1 varianta -- Každý předmět lze použít nejvýše jednou.

Úloha batohu / Knapsack problem

91416
30

Schematický batoh

 s kapacitou 10
Předměty

s uvedenou

cenou,

váha ~ výška

Několik možných

konfigurací

30

14

16 14

14

14

9
9

Úloha batohu neomezená

Algoritmizace
24/43

Úloha batohu neomezená

9

9

9

9

9

14

14

14

16

16

9

16

14

14

30

16

14

45

30

9

9

16

9

9

9

9

14

14

9

9

9

9

41 46 42 43 44 41 48 46

Batoh s kapacitou 10

N = 4

Váha 2 3 4 6

Cena 9 14 16 30

Některé možnosti naplnění a odpovídajíci ceny

Příklad

A4B33ALG 2015/11

16
30

149

Jak bude úloha

neomezeného batohu

řešena?

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
26/43

Úloha batohu neomezená

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K.

Hodnotu optimálního naplnění batohu s kapacitou K lze získat jako

maximum z hodnot

• (optimalní naplnění batohu o kapacitě K - V1) + C1,

• (optimalní naplnění batohu o kapacitě K - V2) + C2,

...

• (optimalní naplnění batohu o kapacitě K - VN) + CN.

Optimální naplnění batohu o kapacitě K - Vi (i = 1..N) je stejnou úlohou,

jen s menšími daty. Hodnoty předpočítáme standardně metodou DP do

1D tabulky.

Neomezenou úlohu batohu lze přímo vyjádřit jako úlohu nalezení nejdelší

cesty v DAG. Postup řešení je identický.

Algoritmizace
27/43

Převod na DAG

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

K = 10, N = 4, Vi = (2, 3, 4, 6), Ci = (9, 14, 16, 30), i = 1..4.Příklad

30

16

14

9

DAG:

Uzly: Kapacity 0, 1, 2, 3, ..., K.

Hrany: Z uzlu X vedou hrany po řadě do uzlů X+V1, X+V2, ...,

V+VN, jsou po řadě ohodnoceny cenami C1, C2, ..., CN.

Algoritmizace
28/43

Neomezená úloha batohu -- jako DAG

Optimální naplnění kapacity 10 = max(18 + 30, 30 + 16, 32 + 14, 39 + 9) = 48

Optimální naplnění kapacity 8 = 39

Optimální naplnění kapacity 7 = 32

Optimální naplnění kapacity 6 = 30

Opt. naplnění kapacity 4 = 18

16

4 5 6 7 8 9 10

30

6 7 8 9 10

7 8 9 10

8 9 10

14

9

0 1 2 3 4 5 6 7 8 9 10
9

16

30

14

Optimální naplnění kapacity 10 = ??

Algoritmizace
29/43

Úloha batohu neomezená

Nejdelší cesta odpovídá optimálnímu naplnění batohu.

Dvě hrany s cenou 9 a jedna hrana s cenou 30, celkem cena = 48.

Batoh optimálně naplníme dvěma předměty s váhou 2 a cenou 9

a jedním předmětem s váhou 6 a cenou 30.

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

Algoritmizace
30/43

Úloha batohu neomezená - asymptotická složitost

7

DAG obsahuje K+1 uzlů a méně než K*N hran.

Má tedy V = (K) uzlů a E = O(K*N) hran.

Asymptotická složitost hledání nejdelší cesty je (V+E),

máme tedy pro neomezenou úlohu batohu

asymptotickou složitost O(K + K*N) = O(K*N).

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

Algoritmizace
31/43

Úloha batohu neomezená - asymptotická složitost

1. Literatura: NP těžký problém, není znám efektivní algoritmus.

2. ALG OI: DP řeší úlohu v čase v O(N*K), tedy efektivně?

Příklad

Velkou kapacitu 264 lze zadat velmi krátkým zápisem

Kapacita = 18446744073709551616.

N = 3. Položky (váha, cena): (2, 345), (3, 456), (5, 678).

Vstupní data lze zapsat do cca 100 bitů < 16 Bytů < "dva longy"

Výpočet pomocí DP potrvá přes 584 roky

za předpokladu, že za 1 sec vyplní 109 prvků tabulky.

Zdánlivá nesrovnalost

Délka výpočtu DP je lineárně závislá na velikosti kapacity K.

Délka výpočtu DP je exponenciálně závislá na délce řetězce

definujícího kapacitu K.

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
33/43

0/1 úloha batohu

• Každý předmět lze použít nejvýše 1 krát.

Máme vybrat vhodnou podmnožinu předmětů splňující zadání

úlohy. Každé podmnožině lze přiřadit charakteristický vektor z

hodnot 0/1 délky N. Pozice ve vektoru odpovídá předmětu, 0 resp.

1 odpovídá nepřítomnosti resp. přítomnosti předmětu v této

podmnožině. Binárních vektorů délky N je celkem 2N,

systematické probírání všech možných podmnožin bude

mít exponenciální asymptotickou složitost, nehodí se.

• DP poskytuje (pro relativně nevelké kapacity) výhodnější

postup.

Algoritmizace
34/43

0/1 úloha batohu

0 9 14 16 30 23 25 39

9 14 16
30

9

14

9
16

9
30

16

14

30

14

30
16

14

9

30

14

30

16

9

30

16

14

30

16

14

9

30 44 46 39 53 55 60 69

16
9

N = 4

Váha Cena

 2 9

 3 14

 4 16

 6 30

Příklad Všech 16 podmnožin čtyř předmětů a jejich ceny

Batoh

s kapacitou 10

16

30

14

9

Algoritmizace
35/43

0/1 úloha batohu - řešení

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K.

Použijeme N+1 souborů předmětů.

Soubor 0 neobsahuje žádný předmět.

Soubor 1 obsahuje předmět 1.

Soubor 2 obsahuje předměty 1 a 2.

Soubor 3 obsahuje předměty 1, 2, 3.

...

Soubor N obsahuje předměty 1, 2, 3, ..., N.

Na pořadí předmětů nezáleží, je ale zafixované.

Pro každou kapacitu a pro každý soubor budeme řešit

stejnou úlohu metodou DP, v pořadí od menších hodnot k větším.

Algoritmizace
36/43

0/1 úloha batohu - řešení

Označme symbolem U(x, y) úlohu se souborem předmětů 1, 2, ..., x a s

kapacitou batohu y a symbolem Opt(x, y) optimální řešení této úlohy.

Pro řešení U(x,y) použijeme optimální řešení úloh U(x-1, _):

• Buď do Opt(x, y) zahrneme předmět x nebo jej nezahrneme. V

prvním případě použijeme hodnotu řešení pro batoh s kapacitou

menší o velikost váhy Vx, tedy hodnotu Opt(x-1, y-Vx), ke které

přičteme cenu Cx předmětu x.

• V druhém případě beze změny použijeme hodnotu Opt(x-1, y). Z

obou hodnot vybereme tu výhodnější a dostáváme tak:

Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).

Dále zřejmě platí Opt(0, y) = Opt(x, 0) = 0, pro x = 0..N, y = 0..K.

Algoritmizace
37/43

0/1 úloha batohu - řešení

Pro x = 1..N, y = 0..K:

• Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).

• Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

Pokud y-Vx < 0, položíme Opt(x, y-Vx) = −  (a netabelujeme).

Hodnoty Opt(x,y) tabelujeme ve 2D tabulce velikosti (N+1)(K+1) s

řádkovým indexem x (předměty) a sloupcovým indexem y (kapacity

menších batohů).

Pro rekonstrukci optimálního řešení použijeme tabulku předchůdců

stejné velikosti jako tabulku pro Opt(x, y). Předchůdce leží vždy v

předchozím řádku x-1, stačí registrovat buď pozici y (beze změny)

nebo pozici y-Vx (přidán předmět x).

Algoritmizace
38/43

0/1 úloha batohu
N = 4 Kapacita = 10

Váha 2 3 4 6

Cena 9 14 16 30

Příklad

16
30

149

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 9 9 9 9 9 9 9 9 9

2 0 0 9 14 14 23 23 23 23 23 23

3 0 0 9 14 16 23 25 30 30 39 39

4 0 0 9 14 16 23 30 30 39 44 46

0 1 2 3 4 5 6 7 8 9 10

0 -- -- -- -- -- -- -- -- -- -- --

1 0 1 0 1 2 3 4 5 6 7 8

2 0 1 2 0 1 2 3 4 5 6 7

3 0 1 2 3 0 5 2 3 4 5 6

4 0 1 2 3 4 5 0 7 2 3 4

Opt(x, y)

Pred(x, y)

0
30

016

Algoritmizace
39/43

0/1 úloha batohu

Uzly DAG budou jednotlivé hodnoty Opt(x, y), x = 0..N, y = 0..K,

celkem bude mít DAG (N+1)*(K+1) uzlů.

Do uzlu Opt(x, y) povede hrana

• Opt(x-1, y) --> Opt(x, y)

ohodnocená 0 (žádný přidaný předmět),

• a pokud y-Vx  0, také hrana

Opt(x-1, y-Vx) --> Opt(x, y)

ohodnocená cenou Cx (cenou přidaného předmětu x).

V takto zkonstruovaném DAG hledáme nejdelší (= nejcennější)

cestu standardní DP metodou.

Jaké je topologické uspořádání tohoto DAG?

Vyjádření jako optimální cesty v DAG

Algoritmizace
40/43

0/1 úloha batohu - topologické uspořádání DAG

V tomto případě není nutno

uzly DAG v topologickém

uspořádání uvažovat v

jedné přímce, "tabulkové"

uspořádání je přehlednější.

DAG můžeme uvažovat nakreslený formálně do DP tabulky, přičemž uzel

Opt(x, y) leží v buňce s indexy x a y. Pak hrany DAG vedou vždy pouze z

předchozího řádku do následujícího řádku. Pokud tento DAG procházíme

shora po řádcích, to jest ve stejném pořadí, v němž vyplňujeme DP

tabulku, respektujeme jeho topologické uspořádání.

Algoritmizace
41/43

0/1 úloha batoh -- DAG

4,104,94,84,74,64,54,44,34,24,14,0

3,103,93,83,73,63,53,43,33,23,13,0

2,102,92,82,72,62,52,42,32,22,12,0

1,101,91,81,71,61,51,41,31,21,11,0

0,100,90,80,70,60,50,40,30,20,10,0

9

14

30

16

V2 = 2

C2 = 9

V4 = 6

C4 = 30

V3 = 4

C3 = 16

V2 = 3

C2 = 14

0

0

0

0

0000
0000

000

30
30 30 30 30

16161616161616
00

000000

00

14

0
0000000

00

1414141414141414

0000000000 9 9 9 9 9 9 9 9 90

P
ří

k
la

d

16

30

14

9

Algoritmizace
42/43

0/1 úloha batoh -- rekonstrukce optimálního řešení

4,104,94,84,74,64,54,44,34,24,14,0

3,103,93,83,73,63,53,43,33,23,13,0

2,102,92,82,72,62,52,42,32,22,12,0

1,101,91,81,71,61,51,41,31,21,11,0

0,100,90,80,70,60,50,40,30,20,10,0

0

0

0

0000
0000

000

30
30 30 30 30

16161616161616
00

000000

00

14

0
0000000

00

1414141414141414

0000000000 9 9 9 9 9 9 9 9 9

0 1 2 3 4 5 6 7 8 9 10

0 -- -- -- -- -- -- -- -- -- -- --

1 0 1 0 1 2 3 4 5 6 7 8

2 0 1 2 0 1 2 3 4 5 6 7

3 0 1 2 3 0 5 2 3 4 5 6

4 0 1 2 3 4 5 0 7 2 3 4

P
re

d
(x

,
y
)

16

30

14

9

tabulka předchůdců

Algoritmizace
43/43

0/1 úloha batoh -- Asymptotická složitost

Tabulka ... Velikost ... (N+1)*(K+1)  (N*K)

Vyplnění jedné buňky ... (1)

Vyplnění tabulky ... (N*K*1) = (N*K).

Rekonstrukce optimálního řešení (N).

Celkem ... (N*K + N) = (N*K).

DAG Uzlů ... (N+1)*(K+1)  (N*K).

Hran ... nejvýše 2*(N+1)*(K+1), tj  O(N*K).

Nalezení optimální cesty ... (uzlů+hran) = (N*K).

Řešení obou variant úlohy batohu, neomezené i 0/1,

má asymptotickou složitost (N*K).

Přitom zárověň platí:

Asymptotická složitost DP řešení je exponenciální

vzhledem k délce řetězce definujícího kapacitu K.

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Optimální binární vyhledávací strom
	Snímek 5: Optimální binární vyhledávací strom
	Snímek 6: Cena vyváženého BVS
	Snímek 7: Optimální binární vyhledávací strom
	Snímek 8: Cena optimálního BVS
	Snímek 9
	Snímek 10: Výpočet ceny optimálního BVS
	Snímek 11: Výpočet ceny optimálního BVS
	Snímek 12: Minimalizace ceny BVS
	Snímek 13: Minimalizace ceny BVS
	Snímek 14: Datové struktury pro výpočet optmálního BVS
	Snímek 15: Výpočet optimálního BVS
	Snímek 16: Výpočet optimálního BVS
	Snímek 17: Výpočet optimálního BVS
	Snímek 18: Výpočet optimálního BVS
	Snímek 19: Výpočet optimálního BVS
	Snímek 20: Výpočet optimálního BVS
	Snímek 21: Výpočet optimálního BVS
	Snímek 22
	Snímek 23: Úloha batohu neomezená
	Snímek 24: Úloha batohu neomezená
	Snímek 25
	Snímek 26: Úloha batohu neomezená
	Snímek 27: Převod na DAG
	Snímek 28: Neomezená úloha batohu -- jako DAG
	Snímek 29: Úloha batohu neomezená
	Snímek 30: Úloha batohu neomezená - asymptotická složitost
	Snímek 31: Úloha batohu neomezená - asymptotická složitost
	Snímek 32
	Snímek 33: 0/1 úloha batohu
	Snímek 34: 0/1 úloha batohu
	Snímek 35: 0/1 úloha batohu - řešení
	Snímek 36: 0/1 úloha batohu - řešení
	Snímek 37: 0/1 úloha batohu - řešení
	Snímek 38: 0/1 úloha batohu
	Snímek 39: 0/1 úloha batohu
	Snímek 40: 0/1 úloha batohu - topologické uspořádání DAG
	Snímek 41: 0/1 úloha batoh -- DAG
	Snímek 42: 0/1 úloha batoh -- rekonstrukce optimálního řešení
	Snímek 43: 0/1 úloha batoh -- Asymptotická složitost
	Snímek 44

