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mm binarni vyhledavaci strom

Vyvazeny, ale ne optimalni
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. Y 4 ] 4 Y 4 1 4 I 4
mim binarni vyhledavaci strom

Cena jednotlivych uzlt v BVS

cena uzlu =
pravdéepodobnost |x hloubka

_____ 1 _____. 0.04-1=0.04
____________________ 2 _____. 001-2=0.02
_____________ 3 _____. 005-3=0.15
_________ 4 _____. 022-4=0.88

0.22 hloubka

cena uzlu = priumérny pocet testu na nalezeni uzlu
pfi jednom dotazu (Find)
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" Ty
Cena vyvazeneho BVS

kli€ pravdép. p, hloubka d, Py - dy
Ann 0.03 4 0.03-4=0.12
Ben 0.08 3 0.08 -3=0.24
Cole 0.12 4 0.12-4=0.48
Dana 0.01 2 0.01 -2=0.02
Edna 0.04 4 0.04 -4=0.16
Fred 0.05 3 0.05-3=0.15
Gene 0.22 4 0.22 -4 =0.88
Hugo 0.04 1 0.04 -1=0.04
Irma 0.06 4 0.06 -4=0.24
Jack 0.05 3 0.05-3=0.15
Ken 0.15 4 0.15 -4 =0.60
Lea 0.09 2 0.09-2=0.18
Mark 0.02 4 0.02 -4=0.08
Nick 0.03 3 0.03 - 3=0.09
Orrie 0.01 4 0.01 -4=0.04
Cena celkem: 3.47

Cena celkem = prum. po¢. testu na jednu operaci Find.
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. Y 4 ] 4 Y 4 1 4 I 4
mm binarni vyhledavaci strom

Struktura optimalniho BVS s danymi pravdépodobnostmi

0.22
Gene
0.12 1 0.15
Cole Ken
0.08 0.05 0.06 0.09
Ben Fred Irma Lea

0.04 0.03

CAnn) Edna (Augd) ack) Nick
0.03 0.04 0.05
0.01 0.02 0.01
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Cena optimalniho BVS

klic pravdep. p, hloubka d, Py - Ay

Ann 0.03 4 0.03-4=0.12
Ben 0.08 3 0.08-3=0.24
Cole 0.12 2 0.12-2=0.24
Dana 0.01 5 0.01-5=0.05
Edna 0.04 4 0.04-4=0.16
Fred 0.05 3 0.05-3=0.15
Gene 0.22 1 0.22-1=0.22
Hugo 0.04 4 0.04-4=0.16
Irma 0.06 3 0.06 -3=0.18
Jack 0.05 4 0.05-4=0.20
Ken 0.15 2 0.15-2=0.30
Lea 0.09 3 0.09-3=0.27
Mark 0.02 S 0.02-5=0.10
Nick 0.03 4 0.03-4=0.12
Orrie 0.01 5 0.01-5=0.05

Cena celkem 2.56

Zrychleni

3.47 :2.56 = 1:0.74
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" E=Nlypotet ceny optimalniho BVS

Cy «--e. CENA levého podstromu uzlu k

Co menes Cena pravého podstromu uzlu k

/ \‘\‘ Pk

P /-—A\ /_R A
k-1 R

Cena = C1k+zpi tCox+ L pi + Pk
i=L i=k+1
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" ISE=Nlypotet ceny optimalniho BVS

Malé
optimalni
podstromy

Velikost stromu
= poc¢. uzlu
= L-R+1

Algoritmizace
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Nad prvky s indexy od L do R
|ze jisté vytvorit jeden optimalni podstrom.

Mame N optimalnich podstromu velikosti 1

N-1 2
N-2 3
1 podstrom N

Celkem mame N * (N+1) /2 rtznych optimalnich podstromu.



" S T
Minimalizace ceny BVS

Idea rekurzivniho resSeni:

-----------

2.Zkus: k = L,L+1,L+2, ..., R

k=L  k=L#1 k=L+2... _ .. k=R

-~ - -
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3. Zaregistruj index k, ktery minimalizuje cenu, tj. hodnotu

R
P; + Pk
i=k+1

1=K+

k-1
Cik+ ZLPi + Co t
|=

4. Kli€c s indexem k je kofenem optimalniho stromu.
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Minimalizace ceny BVS

C(L,R) ...... Cena optimalniho podstromu obsahujiciho klice
S indexy L, L+1, L+2, ..., R-1, R

k-1 R
C(LLR) = min{ C(L, k-1) + pi +C(k+1,R)+ > p; +pc} =
L<k=<R i=L i=k+1
R
= min{ C(L k1) + Ck+1,R)+ 2 p } =
L<k<R i=L
R
(*) = min{ CL k1) + Ck+1,R)} + 2 p
L<k<R i=L

Hodnota k minimalizujici (*) je indexem kofenu optim. podstromu.
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- mwry pro vypocet optmalniho BVS

Ceny optimalnich podstromu Kofeny optimalnich podstromu

pole CI[L][R] (L<R) pole roots [L][R] (L<R)

R R ......................... >
1234 =ereveenee » N
L 1 1
2 L 2
3 3
: L<R _ : L<R
W0 0
N+1 N+1

diagonala ... L= R diagonala ... L= R
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Vypocet optimalniho BVS

Cena konkrétniho optimalniho podstromu

L=3, R=9

P1 /
P2 —
P3la | b| c[d |e rC(L R) = \/\/
P4 X min { C(L, k-1) + C(k+1,R) } +Zp|
P5 y L<k<R i=L
P6 z *
P7 t C(L,R) = min{ 0+x, pg+y, a+z, b+,
Pa | w R c+w, d+pg, e+0 }
0 P9 \ +iz_|:_pi

PN
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" S A LI
Vypocet optimalniho BVS

Strategie DP
— nejprve se zpracuji nejmensi podstromy, pak vetsi, atd...
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" T e f Sl ?
Vypocet optimalniho BVS
Vypocet DP tabulek cen a korenu

void optimalTree () {
int L, R; double min;

// size =1
for( i=0; 1<=N; i++ ) {
Cl[i][1] = pravdepodobnost([i]; roots[i][1] = 1;

// size > 1

for( int size = 2; size <= N; size++ ) {
L =1; R = size;
while( R <= N ) {
C[L][R] = min(C[L][k-1]+C[k+1][R], k = L..R);
roots[L] [R] = ‘k minimalizujici predch. radek’;
C[L][R] += sum(C[i][1], 1 = L..R);
L++; R++;

ooy
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" T e Y
Vypocet optimalniho BVS

Vybudovani optimalniho stromu pomoci
rekonstrukéni tabulky kofenu

vold buildTree( int L, int R) {

i1f (R < L) return;

int keyIndex = roots[L] [R];

// keys ... sorted array of keys
int key = keys[roots[L][R]];

insert (root, key); // standard BST insert
buildTree( L, keyIndex -1 );
buildTree( keyIndex +1, R );

Algoritmizace
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Iniho BVS
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Vypocet optimalniho BVS
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» B x
Uloha batohu neomezena

Uloha batohu / Knapsack problem J

Mame N predmétu, kazdy s vahou Viacenou Ci (i=1, 2, ..., N)

a batoh s kapacitou vahy K.

Mame nalozit batoh témito predméty tak,

aby kapacita K nebyla prekroena a obsah mél maximalni cenu.

Neomezena varianta -- Kazdy predmét lze pouzit libovolnékrat.
0/1 varianta -- Kazdy predmeét Ize pouzit nejvyse jednou.

Schematicky batoh Nékolik moznych

) Predmety : .
s kapacitou 10 s uvedenou konfiguraci
cenou, j—

vaha ~ vyska

30

16] [14] [ 9
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B -
Uloha batohu neomezena

Batoh s kapacitou 10 J

PﬁHadAJ
N=4
Vaha
Cena

14

Ol |©

45 41

2 3 4 6 | |30
9 14 16 30 ol [14] |19 |-
Nekteré moznosti naplnéni a odpovidajici ceny J
9 9
14 el 16
> 16
14
14 on o n
14 16 16 16
46 42 43 44 41 48 46 y
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Jak bude uloha
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» B x
Uloha batohu neomezena

Pouzijeme K+1 batohu, o kapacitach 0, 1, 2, 3, ..., K.
Hodnotu optimalniho naplnéni batohu s kapacitou K Ize ziskat jako
maximum z hodnot

 (optimalni naplnéni batohu o kapacité K - V1) + C1,
 (optimalni naplnéni batohu o kapacité K - V2) + C2,

 (optimalni naplnéni batohu o kapacité K - VN) + CN.
Optimalni naplnéni batohu o kapacité K - Vi (i = 1..N) je stejnou ulohou,
jen s mensimi daty. Hodnoty predpocéitame standardné metodou DP do

1D tabulky.

Neomezenou ulohu batohu Ize pfimo vyjadrit jako ulohu nalezeni nejdelsi
cesty v DAG. Postup reseni je identicky.

Algoritmizace



F— Pfevod na DAG

DAG:

Uzly: Kapacity 0,1, 2, 3, ..., K.

Hrany: Z uzlu X vedou hrany po radé do uzlua X+V1, X+V2, ...,
V+VN, jsou po radé ohodnoceny cenami C1,C2, ..., CN.

Priklad J K=10,N=4,Vi=(2,3,4,6), Ci=(9,14,16,30), i=1.4. |

14 30 30 30 30

B ["

Algoritmizace




" “ESNE8Mezena tloha batohu -- jako DAG

Optimalni naplnéni kapacity 10 = ?? ]

30
A Opt. napinéni kapacity4= 18 04 | O5 06 O 7 O8 09 »010

- Optimalni naplnéni kapacity6=30 O O61 O 7 O8 0O9 ,010

- Optimalni naplnéni kapacity7=32 O O o7 108 O9%010

¥ Optimalni naplnéni kapacity8=39 O O O O 10
4 9)

Vv

Optimalni naplnéni kapacity 10 = max(18 + 30, 30 + 16, 32 + 14, 39+ 9) =48

Algoritmizace



" EES=1oha batohu neomezena

Nejdelsi cesta odpovida optimalnimu naplnéni batohu.
Dvé hrany s cenou 9 a jedna hrana s cenou 30, celkem cena = 48.

Batoh optimalné naplnime dvéema predmety s vahou 2 a cenou 9
a jednim predmétem s vahou 6 a cenou 30.

J

Q.8 O9 010

16)
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< 18Ra batonu neomezena - asymptoticka slozitost

DAG obsahuje K+1 uzlii a méné nez K*N hran.

Ma tedy V = O(K) uzlua a E = O(K*N) hran.

Asymptoticka slozitost hledani nejdelsi cesty je ©(V+E),
mame tedy pro neomezenou ulohu batohu
asymptotickou slozitost O(K + K*N) = O(K*N). y

/
9

\%’r 'V
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|
< 18Ra batonu neomezena - asymptoticka slozitost

Zdanliva nesrovnalost J

1. Literatura: NP tézky problém, neni znam efektivni algoritmus.
2. ALG Ol: DP resi ulohu v case v O(N*K), tedy efektivhe?

Délka vypoctu DP je linearné zavisla na velikosti kapacity K. <—

Priklad

Velkou kapacitu 24 Ize zadat velmi kratkym zapisem

Kapacita = 18446744073709551616.

N = 3. Polozky (vaha, cena): (2, 345), (3, 456), (5, 678).

Vstupni data Ize zapsat do cca 100 biti < 16 Bytu < "dva longy"
Vypocet pomoci DP potrva pres 584 roky

za predpokladu, ze za 1 sec vyplni 10° prvku tabulky.

Délka vypoctu DP je exponencialné zavisla na délce retézce <¥
definujiciho kapacitu K.

Algoritmizace
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e —— 0/1 dloha batohu

« Kazdy predmét Ize pouzit nejvyse 1 krat.

Mame vybrat vhodnou podmnozinu predmétu spliujici zadani
ulohy. Kazdé podmnoziné lze priradit charakteristicky vektor z
hodnot 0/1 délky N. Pozice ve vektoru odpovida predmetu, 0 resp.
1 odpovida nepritomnosti resp. pritomnosti predmétu v této
podmnoziné. Binarnich vektora délky N je celkem 2N,
systematické probirani vSech moznych podmnozin bude

mit exponencialni asymptotickou slozitost, nehodi se.

« DP poskytuje (pro relativné nevelké kapacity) vyhodnéjsi
postup.

Algoritmizace



étu a jejich ceny J
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0/1 uloha batohu
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" S0 Gloha batohu - feseni

Pouzijeme K+1 batoh, o kapacitach 0, 1, 2, 3, ..., K.
Pouzijeme N+1 souboru predmeétu.

Soubor 0 neobsahuje zadny predmet.
Soubor 1 obsahuje predmet 1.

Soubor 2 obsahuje predméty 1 a 2.
Soubor 3 obsahuje predmety 1, 2, 3.
Soubor N obsahuje predmeéty 1, 2, 3, ..., N.

Na poradi predmétl nezalezi, je ale zafixované.

Pro kazdou kapacitu a pro kazdy soubor budeme resit
stejnou ulohu metodou DP, v poradi od mensich hodnot k vetsim.

Algoritmizace



" S0 Gloha batohu - feseni

Oznaéme symbolem U(x, y) ulohu se souborem predméta 1,2, ..., xas
kapacitou batohu y a symbolem Opt(x, y) optimalni reSeni této ulohy.

Pro reSeni U(x,y) pouzijeme optimalni reseni uloh U(x-1, _):

* Bud do Opt(x, y) zahrneme predmét x nebo jej nezahrneme. V
prvnim pripadé pouzijeme hodnotu reSeni pro batoh s kapacitou
mensi o velikost vahy Vx, tedy hodnotu Opt(x-1, y-Vx), ke které
pri€éteme cenu Cx predmeétu x.

* V druhém pripadé beze zmény pouzijeme hodnotu Opt(x-1, y). Z
obou hodnot vybereme tu vyhodnéjsi a dostavame tak:

Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).

Dale ziejmé plati Opt(0, y) = Opt(x, 0) =0, pro x =0..N, y = 0..K.

Algoritmizace



" S0 Gloha batohu - feseni

Prox=1..N,y =0..K:

« Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).
« Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

Pokud y-Vx < 0, polozime Opt(x, y-Vx) = - o (a netabelujeme).

Hodnoty Opt(x,y) tabelujeme ve 2D tabulce velikosti (N+1)x(K+1) s
radkovym indexem x (predméty) a sloupcovym indexem y (kapacity
mensich batohu).

Pro rekonstrukci optimalniho resSeni pouzijeme tabulku predchtdcii
stejné velikosti jako tabulku pro Opt(x, y). Predchtidce lezi vzdy v
predchozim radku x-1, sta€i registrovat bud’ pozici y (beze zmény)
nebo pozici y-Vx (pridan predmeét x).

Algoritmizace



0/1 uloha batohu

Priklad JN=4 Kapacita = 10
Vaha 2 3 4 6 —1 I30
Cena 9 14 16 30 o] 4] 19 [
\

Optix,¥) o 1 2 3 2 5 6 7 8 9 10
0o]o 0 0 0 0 0 0 0 0 0 o0
1]l0 o0 9 9 9 9 9 9 9 9 9
2 [0 o0 (9)141514 23 (23023 23 23 23
3/l0o o 9 163023 (2530 30 9
4 |0 0 9 14 16 23 30 30 39”@d% e

\

Predx.¥) o 1 2 3 4 5 6 7 8 9 10
0 —_— —_ —_ —_ —_— —_— —_— —_— —_—— —_—— —_——
1/l0o 1 o 1 2 3 4 5 6 71 8
2o 1 2r¢-1 2 3 4 5 6 7T
3lo 1 2 @)L o 57M2) 3 4 5 6
alo 1 2 3 4 5 0 7 2*RQ 4

Algoritmizace



— 0/1 dloha batohu

VyjadFeni jako optimalni cesty v DAG J

Uzly DAG budou jednotlivé hodnoty Opt(x,y), x=0..N, y =0..K,
celkem bude mit DAG (N+1)*(K+1) uzlq.
Do uzlu Opt(x, y) povede hrana

* Opt(x-1,y) --> Opt(x, y)
ohodnocena 0 (zadny pridany predmét),

 apokud y-Vx >0, také hrana
Opt(x-1, y-Vx) --> Opt(x, y)
ohodnocena cenou Cx (cenou pridaneho predmetu x).

V takto zkonstruovaném DAG hledame nejdelsi (= nejcennéjsi)
cestu standardni DP metodou.

Jaké je topologické usporadani tohoto DAG?
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- 'matohu - topologicke usporadani DAG

DAG muzeme uvazovat nakresleny formalné do DP tabulky, pfricemz uzel
Opt(x, y) lezi v bunce s indexy x a y. Pak hrany DAG vedou vzdy pouze z
predchoziho radku do nasledujiciho radku. Pokud tento DAG prochazime
shora po radcich, to jest ve stejném poradi, v nemz vyplnujeme DP
tabulku, respektujeme jeho topologické usporadani.

EENR O
™ v ;
e Q V tomto pripadé neni nutno
N uzly DAG v topologickém
=en 1O usporadani uvazovat v
+ l jedné primce, "tabulkové"
usporadani je prehlednéjsi.
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" ESSES0M Gloha batoh -- DAG
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N
<0 tiona batoh - rekonstrukce optimalniho reseni

tabulka predchudci |

Algoritmizace
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" EEyT"tioha batoh -- Asymptoticka slozitost

Tabulka ... Velikost ... (N+1)*(K+1) € ©(N*K)
VyplInéni jedné bunky ... (1)
Vyplnéni tabulky ... ®(N*K*1) = O(N*K).
Rekonstrukce optimalniho reseni O(N).
Celkem ... O(N*K + N) = O(N*K).

DAG .... Uzl ... (N+1)*(K+1) € ©(N*K).
Hran ... nejvyse 2*(N+1)*(K+1), tj € O(N*K).
Nalezeni optimalni cesty ... ®(uzlu+hran) = O(N*K).

Reseni obou variant alohy batohu, neomezené i 0/1,
ma asymptotickou slozitost ®(N*K).

Pritom zarovén plati:

Asymptoticka slozitost DP reseni je exponencialni
vzhledem k délce retézce definujiciho kapacitu K.
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