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Přehled
◼ Dynamické programování (DP)

 Optimální binární vyhledávací strom 

 Úloha batohu neomezená 

 Úloha batohu 0/1
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Optimální binární vyhledávací strom 
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Optimální binární vyhledávací strom 
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Cena vyváženého BVS
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Cena celkem: 3.47 
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Cena celkem =  prům. poč. testů na jednu operaci Find.
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Optimální binární vyhledávací strom 
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Cena optimálního BVS
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Výpočet ceny optimálního BVS

Xyz

pk

C2k 

C1k 

k+1 RL k-1 k

cena levého podstromu uzlu kC1k 

Cena pravého podstromu uzlu kC2k 

R


i=k+1

pi Cena  =  C1k + +  

k-1


i=L

pi + C2k + pk 

pk

Rekurzivní myšlenka
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Výpočet ceny optimálního BVS

1      2 L N R

Nad prvky s indexy od L do R

lze jistě vytvořit jeden optimální podstrom.

Máme   N   optimalních podstromů velikosti  1

1                        podstrom           N

2N-1

N-2 3

Celkem máme    N * (N+1) /2   různých optimálních podstromů.

Velikost stromu 

  = poč. uzlů 

  = L-R+1 

Malé 

optimální

podstromy 
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Minimalizace ceny BVS

2. Zkus:   k  =  L, L+1, L+2, ..., R

1. Předpoklad :   Všechny menší optimální stromy jsou známy.

Idea rekurzivního řešení:

3. Zaregistruj index k, který minimalizuje cenu, tj. hodnotu 

R


i=k+1

pi C1k + +  

k-1


i=L

pi + C2k + pk 

4. Klíč s indexem k je kořenem optimálního stromu. 

k=L     k=L+1    k=L+2 …                                                              ...  k=R
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Minimalizace ceny BVS

C(L,R)  = min {  C(L, k-1) +  
i=L

k-1

pi 
i=k+1

R

pi + C(k+1,R) +  
L  k  R

+ pk }  =

min {  C(L, k-1) +  
i=L

R

pi C(k+1,R) +  
L  k  R

}  =

min {  C(L, k-1) +  
i=L

R

pi C(k+1,R)  }  +  
L  k  R

=

=

C(L,R)  ......  Cena optimálního podstromu obsahujícího klíče

                     s indexy         L, L+1, L+2, ..., R-1, R

Hodnota k minimalizující (*)  je indexem kořenu optim. podstromu. 

(*)  
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Datové struktury pro výpočet optmálního BVS

Ceny optimálních podstromů

pole     C [L][R] (L ≤ R)

Kořeny optimálních podstromů

  pole      roots [L][R]     (L ≤ R)
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L ≤ R L ≤ R 

diagonála ... L= R diagonála ... L= R 
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Výpočet optimálního BVS
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Cena konkrétního optimálního podstromu


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R

pi + 

L  k  R

C(L,R) = 

  min { C(L, k-1) + C(k+1,R) }  

C(L,R) =  min{ 0+x, p3+y, a+z, b+t, 

                         c+w, d+p9, e+0 } 


R

pi + 
i=L
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Výpočet optimálního BVS

Strategie DP 

– nejprve se zpracují nejmenší podstromy, pak větší, atd… 

Stop
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Výpočet optimálního BVS

void optimalTree() {

  int L, R; double min;

  // size = 1

  for( i=0; i<=N; i++ ) {

    C[i][i] = pravděpodobnost[i]; roots[i][i] = i;

  // size > 1

  for( int size = 2; size <= N; size++ ) {

    L = 1; R = size;

    while( R <= N ) {

      C[L][R] = min(C[L][k-1]+C[k+1][R], k = L..R);

      roots[L][R] = ‘k minimalizující předch. řádek’;

      C[L][R] += sum(C[i][i], i = L..R);

      L++; R++;

}  }  }    

Výpočet DP tabulek cen a kořenů 
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Výpočet optimálního BVS

void buildTree( int L, int R) {

  if (R < L) return;

  int keyIndex = roots[L][R];

  // keys ... sorted array of keys  

  int key = keys[roots[L][R]];

  insert(root, key);  // standard BST insert 

  buildTree( L, keyIndex -1 );

  buildTree( keyIndex +1, R );

}

Vybudování optimálního stromu pomocí 

rekonstrukční tabulky kořenů
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Výpočet optimálního BVS

0  1  2  3  3  3  3  3  7  7  7  7  7  7  7  7

0  0  2  3  3  3  3  7  7  7  7  7  7  7  7  7

0  0  0  3  3  3  3  7  7  7  7  7  7  7  7  7

0  0  0  0  4  5  6  7  7  7  7  7  7  7  7  7

0  0  0  0  0  5  6  7  7  7  7  7  7  7  7  7

0  0  0  0  0  0  6  7  7  7  7  7  7  7 11 11

0  0  0  0  0  0  0  7  7  7  7  7 11 11 11 11

0  0  0  0  0  0  0  0  8  9  9 11 11 11 11 11

0  0  0  0  0  0  0  0  0  9  9 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0 10 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0  0 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0  0  0 12 12 12 12

0  0  0  0  0  0  0  0  0  0  0  0  0 13 14 14

0  0  0  0  0  0  0  0  0  0  0  0  0  0 14 14

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 15

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

Kořeny optimálních podstromů
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Výpočet optimálního BVS

0  1  2  3  3  3  3  3  7  7  7  7  7  7  7  7

0  0  2  3  3  3  3  7  7  7  7  7  7  7  7  7

0  0  0  3  3  3  3  7  7  7  7  7  7  7  7  7

0  0  0  0  4  5  6  7  7  7  7  7  7  7  7  7

0  0  0  0  0  5  6  7  7  7  7  7  7  7  7  7

0  0  0  0  0  0  6  7  7  7  7  7  7  7 11 11

0  0  0  0  0  0  0  7  7  7  7  7 11 11 11 11

0  0  0  0  0  0  0  0  8  9  9 11 11 11 11 11

0  0  0  0  0  0  0  0  0  9  9 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0 10 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0  0 11 11 11 11 11

0  0  0  0  0  0  0  0  0  0  0  0 12 12 12 12

0  0  0  0  0  0  0  0  0  0  0  0  0 13 14 14

0  0  0  0  0  0  0  0  0  0  0  0  0  0 14 14

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 15

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
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Výpočet optimálního BVS

1-A  2-B  3-C  4-D  5-E  6-F  7-G  8-H  9-I 10-J 11-K 12-L 13-M 14-N 15-O 

 1-A 0.03 0.14 0.37 0.39 0.48 0.63 1.17 1.26 1.42 1.57 2.02 2.29 2.37 2.51 2.56

 2-B   0  0.08 0.28 0.30 0.39 0.54 1.06 1.14 1.30 1.45 1.90 2.17 2.25 2.39 2.44

 3-C   0    0  0.12 0.14 0.23 0.38 0.82 0.90 1.06 1.21 1.66 1.93 2.01 2.15 2.20

 4-D   0    0    0  0.01 0.06 0.16 0.48 0.56 0.72 0.87 1.32 1.59 1.67 1.81 1.86

 5-E   0    0    0    0  0.04 0.13 0.44 0.52 0.68 0.83 1.28 1.55 1.63 1.77 1.82

 6-F   0    0    0    0    0  0.05 0.32 0.40 0.56 0.71 1.16 1.43 1.51 1.63 1.67

 7-G   0    0    0    0    0    0  0.22 0.30 0.46 0.61 1.06 1.31 1.37 1.48 1.52

 8-H   0    0    0    0    0    0    0  0.04 0.14 0.24 0.54 0.72 0.78 0.89 0.93

 9-I   0    0    0    0    0    0    0    0  0.06 0.16 0.42 0.60 0.66 0.77 0.81

10-J   0    0    0    0    0    0    0    0    0  0.05 0.25 0.43 0.49 0.60 0.64

11-K   0    0    0    0    0    0    0    0    0    0  0.15 0.33 0.39 0.50 0.54

12-L   0    0    0    0    0    0    0    0    0    0    0  0.09 0.13 0.21 0.24

13-M   0    0    0    0    0    0    0    0    0    0    0    0  0.02 0.07 0.09

14-N   0    0    0    0    0    0    0    0    0    0    0    0    0  0.03 0.05

15-O   0    0    0    0    0    0    0    0    0    0    0    0    0    0  0.01

Ceny optimálních podstromů
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Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2, ..., N)

a batoh s kapacitou váhy K.

Máme naložit batoh těmito předměty tak, 

aby kapacita K nebyla překročena a  obsah měl maximální cenu.

Neomezená varianta -- Každý předmět lze použít libovolněkrát.

0/1 varianta -- Každý předmět lze použít nejvýše jednou.

Úloha batohu / Knapsack problem

91416
30

Schematický batoh 

 s kapacitou 10
Předměty 

s uvedenou 

cenou,

váha ~ výška

Několik možných

konfigurací

30

14

16 14

14

14

9
9

Úloha batohu neomezená
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Úloha batohu neomezená

9
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41 46 42 43 44 41 48 46

Batoh s kapacitou 10

N = 4

Váha 2     3      4      6

Cena     9   14    16    30

Některé možnosti naplnění a odpovídajíci ceny

Příklad

A4B33ALG  2015/11 
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149
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Úloha batohu neomezená

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K.

Hodnotu optimálního naplnění batohu s kapacitou K lze získat jako 

maximum z hodnot 

• (optimalní naplnění batohu o kapacitě K - V1) + C1,

•  (optimalní naplnění batohu o kapacitě K - V2) + C2,

...

• (optimalní naplnění batohu o kapacitě K - VN) + CN.

Optimální naplnění batohu o kapacitě K - Vi (i = 1..N) je stejnou úlohou, 

jen s menšími daty.  Hodnoty předpočítáme standardně metodou DP do 

1D tabulky.

Neomezenou úlohu batohu lze přímo vyjádřit jako úlohu nalezení nejdelší 

cesty v DAG. Postup řešení je identický.
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Převod na DAG

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16

K = 10, N = 4, Vi = (2, 3, 4, 6),  Ci = (9, 14, 16, 30),  i = 1..4.Příklad

30

16

14

9

DAG:

Uzly:     Kapacity 0, 1, 2, 3, ..., K. 

Hrany: Z uzlu X vedou hrany po řadě do uzlů X+V1, X+V2, ..., 

V+VN, jsou po řadě ohodnoceny cenami       C1, C2, ..., CN.       
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Neomezená úloha batohu -- jako DAG

Optimální naplnění kapacity 10 = max(18 + 30,  30 + 16,  32 + 14,  39 +  9) = 48 

Optimální naplnění kapacity 8 = 39

Optimální naplnění kapacity 7 = 32

Optimální naplnění kapacity 6 = 30

Opt. naplnění kapacity 4 =  18

16

4 5 6 7 8 9 10

30

6 7 8 9 10

7 8 9 10

8 9 10

14

9

0 1 2 3 4 5 6 7 8 9 10
9

16

30

14

Optimální naplnění kapacity 10 = ??
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Úloha batohu neomezená

Nejdelší cesta odpovídá optimálnímu naplnění batohu.

Dvě hrany s cenou 9 a jedna hrana s cenou 30, celkem cena = 48.

Batoh optimálně naplníme dvěma předměty s váhou 2 a cenou 9

a jedním předmětem s váhou 6 a cenou 30. 

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16



Algoritmizace
30/43

Úloha batohu neomezená - asymptotická složitost

7

DAG obsahuje K+1 uzlů a méně než K*N hran. 

Má tedy V = (K) uzlů a E = O(K*N) hran. 

Asymptotická složitost hledání nejdelší cesty je (V+E), 

máme tedy pro neomezenou úlohu batohu 

asymptotickou složitost   O(K + K*N) = O(K*N). 

0 1 2 3 4 5 6 7 8 9 10

30303030

14 14 14 14 14 14

9 9 9 9 9 9 9 9

16 16 16 16 16 16



Algoritmizace
31/43

Úloha batohu neomezená - asymptotická složitost

1.  Literatura: NP těžký problém, není znám efektivní algoritmus. 

2. ALG OI:     DP řeší úlohu v čase v O(N*K), tedy efektivně?

Příklad

Velkou kapacitu 264 lze zadat velmi krátkým zápisem

Kapacita = 18446744073709551616.

N = 3. Položky (váha, cena): (2, 345), (3, 456), (5, 678).

Vstupní data lze zapsat do cca 100 bitů < 16 Bytů < "dva longy"  

Výpočet pomocí DP potrvá přes 584 roky

za předpokladu, že za 1 sec vyplní 109 prvků tabulky.

Zdánlivá nesrovnalost

Délka výpočtu DP je lineárně závislá na velikosti kapacity K.

Délka výpočtu DP je exponenciálně závislá na délce řetězce

definujícího kapacitu K. 
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0/1 úloha batohu 

• Každý předmět lze použít nejvýše 1 krát.

Máme vybrat vhodnou podmnožinu předmětů splňující zadání 

úlohy. Každé podmnožině lze přiřadit charakteristický vektor z 

hodnot 0/1 délky N. Pozice ve vektoru odpovídá předmětu, 0 resp. 

1 odpovídá nepřítomnosti resp. přítomnosti předmětu v této 

podmnožině. Binárních vektorů délky N je celkem 2N, 

systematické probírání všech možných podmnožin bude 

mít exponenciální asymptotickou složitost, nehodí se.

• DP poskytuje (pro relativně nevelké kapacity) výhodnější 

postup.  
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0/1 úloha batohu 

0 9 14 16 30 23 25 39

9 14 16
30

9

14

9
16

9
30

16

14

30

14

30
16

14

9

30

14

30

16

9

30

16

14

30

16

14

9

30 44 46 39 53 55 60 69

16
9

N = 4

Váha Cena

   2        9

   3    14

   4     16

   6      30

Příklad Všech 16 podmnožin čtyř předmětů a jejich ceny

Batoh 

s kapacitou 10

16

30

14

9



Algoritmizace
35/43

0/1 úloha batohu - řešení 

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K.

Použijeme N+1 souborů předmětů.

Soubor 0 neobsahuje žádný předmět.

Soubor 1 obsahuje předmět 1.

Soubor 2 obsahuje předměty 1 a 2.

Soubor 3 obsahuje předměty 1, 2, 3.

...

Soubor N obsahuje předměty 1, 2, 3, ..., N.

Na pořadí předmětů nezáleží, je ale zafixované.

Pro každou kapacitu a pro každý soubor budeme řešit 

stejnou úlohu metodou DP,  v pořadí od menších hodnot k větším.  
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0/1 úloha batohu - řešení

Označme symbolem U(x, y) úlohu se souborem předmětů 1, 2, ..., x a s 

kapacitou batohu y a symbolem Opt(x, y) optimální řešení této úlohy.

Pro řešení U(x,y) použijeme optimální řešení úloh U(x-1, _ ):

• Buď do Opt(x, y) zahrneme předmět x nebo jej nezahrneme. V 

prvním případě použijeme hodnotu řešení pro batoh s kapacitou 

menší o velikost váhy Vx, tedy hodnotu Opt(x-1, y-Vx), ke které 

přičteme cenu Cx předmětu x.     

• V druhém případě beze změny použijeme hodnotu Opt(x-1, y). Z 

obou hodnot vybereme tu výhodnější a dostáváme tak: 

Opt(x, y) = max(Opt(x-1, y),  Opt(x-1, y-Vx) + Cx).

Dále zřejmě platí Opt(0, y) = Opt(x, 0) = 0, pro x = 0..N, y = 0..K.
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0/1 úloha batohu - řešení 

Pro x = 1..N, y = 0..K:

• Opt(x, y) = max(Opt(x-1, y),  Opt(x-1, y-Vx) + Cx). 

• Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

Pokud y-Vx < 0, položíme Opt(x, y-Vx) = −  (a netabelujeme).

Hodnoty Opt(x,y) tabelujeme ve 2D tabulce velikosti  (N+1)(K+1) s 

řádkovým indexem x (předměty) a sloupcovým indexem y (kapacity 

menších batohů).

Pro rekonstrukci optimálního řešení použijeme tabulku předchůdců 

stejné velikosti jako tabulku pro Opt(x, y). Předchůdce leží vždy v 

předchozím řádku x-1, stačí registrovat buď pozici y (beze změny)  

nebo pozici y-Vx (přidán předmět x).
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0/1 úloha batohu 
N = 4 Kapacita = 10 

Váha 2    3    4     6
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0/1 úloha batohu 

Uzly DAG budou jednotlivé hodnoty Opt(x, y),  x = 0..N, y = 0..K,

celkem bude mít DAG (N+1)*(K+1) uzlů.

Do uzlu Opt(x, y) povede hrana 

• Opt(x-1, y) --> Opt(x, y) 

ohodnocená 0 (žádný přidaný předmět),

• a pokud  y-Vx  0, také hrana 

Opt(x-1, y-Vx) --> Opt(x, y)  

ohodnocená cenou Cx (cenou přidaného předmětu x).

V takto zkonstruovaném DAG hledáme nejdelší (= nejcennější) 

cestu standardní DP metodou.

Jaké je topologické uspořádání tohoto DAG?

Vyjádření jako optimální cesty v DAG 
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0/1 úloha batohu - topologické uspořádání DAG

V tomto případě není nutno

uzly DAG v topologickém 

uspořádání uvažovat v

jedné přímce, "tabulkové"

uspořádání je přehlednější. 

DAG můžeme uvažovat nakreslený formálně do DP tabulky, přičemž uzel 

Opt(x, y) leží v buňce s indexy x a y. Pak hrany DAG vedou  vždy pouze z 

předchozího řádku do následujícího řádku. Pokud tento DAG procházíme 

shora po řádcích, to jest ve stejném pořadí, v němž vyplňujeme DP 

tabulku, respektujeme jeho topologické uspořádání. 
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0/1 úloha batoh -- DAG 
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0/1 úloha batoh -- rekonstrukce optimálního řešení 
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0/1 úloha batoh -- Asymptotická složitost 

Tabulka ...  Velikost ... (N+1)*(K+1)  (N*K)

Vyplnění jedné buňky ... (1)

Vyplnění tabulky ... (N*K*1) = (N*K).

Rekonstrukce optimálního řešení (N).

Celkem ... (N*K + N) = (N*K).

DAG .... Uzlů ... (N+1)*(K+1)  (N*K). 

Hran ... nejvýše 2*(N+1)*(K+1), tj  O(N*K).

Nalezení optimální cesty ... (uzlů+hran) =  (N*K).

Řešení obou variant úlohy batohu, neomezené i 0/1, 

má asymptotickou složitost (N*K).

Přitom zárověň platí:

Asymptotická složitost  DP řešení je exponenciální 

vzhledem k délce řetězce definujícího kapacitu K. 
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