
Algoritmizace
1/54

Algoritmizace

Daniel Průša, Robert Pěnička

2025

Algoritmizace
2/54

Přehled
◼ Vyhledávání

◼ Rozptylování (Hashing)

 Rozptylovací funkce

 Řešení kolizí

◼ Zřetězené rozptylování

◼ Otevřené rozptylování

 Linear Probing

 Double hashing

Join at slido.com

#2981433

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
4/54

Slovník - Dictionary

◼ Řada aplikací potřebuje

 dynamickou množinu

 s operacemi: Search, Insert, Delete

= slovník

Př. Tabulka symbolů překladače

identifikátor typ adresa

suma int 0xFFFFDC09

Algoritmizace
5/54

Vyhledávání

–klíč je přímo indexem (adresou)

–rozsah klíčů ~ rozsahu indexů

–výpočtem adresy z hodnoty klíče

a
d
re

s
n
í

v
y
h
le

d
á

v
á
n
í

Rozptylováním

Indexováním klíčem (přímý přístup)

průměrně (1)

(1)

–Nalezeno, když klíč_prvku = hledaný klíč

–např. sekvenční vyhledávání, BVS,...

Porovnáváním klíčů (log n)

a
s
o
c
ia

ti
v
n
í

Jaký vyhledávací

algoritmus by byl

výrazně urychlen

využitím Hashingu?

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
7/54

Rozptylování - Hashing

◼ kompromis mezi rychlostí a spotřebou paměti

 ∞ času - sekvenční vyhledávání

 ∞ paměti - přímý přístup (indexování klíčem)

 málo času i paměti

◼ Hashing

◼ velikost tabulky reguluje čas vyhledání

Algoritmizace
8/54

Rozptylování - Hashing

◼ Konstantní očekávaný čas pro vyhledání a vkládání

(search and insert) !!!

◼ Něco za něco:

 čas provádění ~ délce klíče

 není vhodné pro operace výběru podmnožiny a

řazení (select a sort)

Algoritmizace
9/54

Rozptylování - Hashing

◼ Rozptylování vhodné pro |K| << |U|

◼ K množina použitých klíčů

◼ U universum klíčů

použité klíče

10
2

21

31

možné klíče = Universum klíčů

K

U

Algoritmizace
10/54

Rozptylování - Hashing

◼ Dvě fáze

1. Výpočet rozptylovací funkce h(k)

(h(k) vypočítá adresu z hodnoty klíče)

2. Vyřešení kolizí

h(31) kolize: index 1 již obsazen

10
2

21

0 10

1 21

2 2

...

M-1

h(2)

h(10)

h(21)

h(k)
31

h(31)?

KU

Algoritmizace
11/54

Rozptylovací funkce h(k)

Zobrazuje množinu klíčů K  U

do intervalu adres A = <amin, amax>, obvykle <0,M-1>

|U| >> |K| |A|

(h(k) Vypočítá adresu z hodnoty klíče)

Synonyma: k1  k2, h(k1) = h(k2)

 = kolize

~=

Algoritmizace
12/54

Rozptylovací funkce h(k)

◼ Je silně závislá na vlastnostech klíčů a jejich reprezentaci v

paměti

◼ Ideálně:

 výpočetně co nejjednodušší (rychlá)

 aproximuje náhodnou funkci

 využije rovnoměrně adresní prostor

 generuje minimum kolizí

 proto: využívá všechny složky klíče

Algoritmizace
13/54

Rozptylovací funkce h(k) – příklady

◼ Příklady funkce h(k) pro různé typy klíčů

 reálná čísla

 celá čísla

 Bitová

 řetězce

◼ Chybná rozptylovací funkce

Algoritmizace
14/54

Rozptylovací funkce h(k) - reálná čísla

Pro reálná čísla z intervalu <0, 1>

◼ multiplikativní: h(k,M) = round(k * M)

neoddělí shluky blízkých čísel (s rozdílem < 1/M)

M = velikost tabulky (table size)

Algoritmizace
15/54

Rozptylovací funkce h(k) - celá čísla

Pro celá čísla

◼ multiplikativní: (kde M je prvočíslo, klíče mají w bitů)

 h(k,M) = round(k /2w * M)

◼ modulární:

 h(k,M) = k % M

◼ kombinovaná:

 h(k,M) = round(c * k) % M, c <0,1>

 h(k,M) = (int)(0.616161 * k) % M

 h(k,M) = (16161 * k) % M // pozor na přetečení

Algoritmizace
16/54

Rozptylovací funkce h(k) - celá čísla

Rychlá, silně závislá na reprezentaci klíčů

h(k) = k & (M-1) kde M = 2x (není prvočíslo) ,

 & je bitový součin

je totéž jako

h(k) = k % M, tj.použije x nejnižších bitů klíče

Algoritmizace
17/54

Rozptylovací funkce h(k) – řetězce

Pro řetězce (for strings):

 int hash(char *k, int M) {

 int h = 0, a = 127;

for(; *k != 0; k++)

 h = (a * h + *k) % M;

 return h;

}

Hornerovo schéma :

P(a) = k4 * a4 + k3 * a3 + k2 * a2 + k1*a
1 + k0 * a0

= (((k4 *a + k3)*a + k2)*a + k1)*a + k0

Výpočet hodnoty polynomu P v bodě a, koeficienty P

jsou jednotlivé znaky (jejich číselná hodnota) v řetězci *k.

Algoritmizace
18/54

Rozptylovací funkce h(k) – řetězce

Pro řetězce (for strings) Java:

 public int hashCode(String s, int M) {

int h = 0;

for(int i = 0; i < s.length(); i++)

 h = 31 * h + s.charAt(i);

return h;

}

Hodnota konstant 127, 31 přispívá rovnoměrnému
psoudonáhodnému rozptýlení.

Algoritmizace
19/54

Rozptylovací funkce h(k) – řetězce

Pro řetězce: (pseudo-) randomizovaná

int hash(char *k, int M){

int h = 0, a = 31415; b = 27183;

for(; *k != 0; k++, a = a*b % (M-1))

 h = (a * h + *k) % M;

return h;

}

Algoritmizace
20/54

Rozptylovací funkce h(k) – chyba

Častá chyba:

funkce vrací stále nebo většinou stejnou hodnotu

◼ chyba v konverzi typů

◼ funguje, ale vrací blízké adresy

◼ proto generuje hodně kolizí

=> aplikace je extrémně pomalá, řešení kolizí zdržuje.

Algoritmizace
21/54

Rozptylovací funkce h(k)

Každá hashovací funkce má slabá místa, kdy pro různé klíče

dává stejnou adresu

◼ Misto jedné hashovací funkce h(k) máme konečnou

množinu H funkcí mapujících U do intervalu {0, 1, …, m-1}

◼ Při spuštění programu jednu náhodně zvolíme

◼ Tato množina je univerzální, pokud pro různé klíče x,y  U

vrací stejnou adresu h(x) = h(y) přesně v |H|/m případech

◼ Pravděpodobnost kolize při náhodném výběru funkce h(k)

je tedy přesně 1/m

Univerzální hashování

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
23/54

Řešení kolizí - Zřetězené rozptylování

◼ h(k) = k mod 3

◼ posloupnost : 1, 5, 21, 10, 7

0

1

2

1 \

21 \

7

5 \

linkheads

seznamy synonym

10

Vkládá se na začátek

Algoritmizace
24/54

Řešení kolizí - Zřetězené rozptylování

private:

link* heads; int N,M; [Sedgewick]

public:

 init(int maxN) // initialization

 {

N=0; // No. of nodes

 M = maxN / 5; // table size

 heads = new link[M]; // table with pointers

 for(int i = 0; i < M; i++)

 heads[i] = null;

 }

...

Algoritmizace
25/54

Řešení kolizí - Zřetězené rozptylování

Item search(Key k)

{

return searchList(heads[hash(k, M)], k);

}

void insert(Item item)

{

int i = hash(item.key(), M);

heads[i] = new node(item, heads[i]);

N++;

}

// Vkládá se na začátek

Algoritmizace
26/54

Řešení kolizí - Zřetězené rozptylování

n = počet prvků, m = velikost tabulky, m<n.

Řetěz synonym má ideálně délku  =n/m,  >1 (plnění tabulky)

Insert I(n) = thash + tlink = O(1)

Search Q(n) = thash + tsearch průměrně

= thash + tc* n/(2m) = O(n) O(1 + )

Delete D(n) = thash + tsearch + tlink = O(n) O(1 + )

◼ pro malá  (velká m) se hodně blíží O(1) !!!

◼ pro velká  (malá m) m-násobné zrychlení vůči

sekvenčnímu hledání.

velmi nepravděpodobný

extrém

Algoritmizace
27/54

Řešení kolizí - Zřetězené rozptylování

Praxe: volit m = n/5 až n/10 => plnění  = 10 prvků / řetěz

◼ vyplatí se hledání sekvenčně (je krátké)

◼ neplýtvá nepoužitými ukazateli

Shrnutí:

◼ + nemusíme znát n předem

◼ – potřebuje dynamické přidělování paměti

◼ – potřebuje paměť na ukazatele a na tabulku[m]

Algoritmizace
28/54

Rehashing

◼ Zvětšení hashovací tabulky při jejím nadměrném zaplnění

◼ Nová větší tabulka používá jinou hashovací funkci

◼ Potřeba rozložit požadovaný výkon na rehashing mezi více
volání nad tabulkami

◼ Přesun z původní tabulky po jednotlivých prvcích

◼ Po nějakou dobu třeba udržovat dvě tabulky, jak tu
„zaplněnou“ tak tu novou

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
30/54

Řešení kolizí - Otevřené rozptylování

◼ Otevřené rozptylování (open-address
hashing)

Známe předem počet prvků (odhad) nechceme
ukazatele (v prvcích ani tabulku) => posloupnost do
pole

Podle tvaru hashovací funkce h(k) při kolizi:

 1. lineární prohledávání (linear probing)

 2. dvojí rozptylování (double hashing)

0 5

1 1

2 21

3 10

4

Algoritmizace
31/54

Řešení kolizí - Otevřené rozptylování

0 5

1 1

2

3

4

h(k) = k mod 5 (h(k) = k mod m, m je rozměr pole)

posloupnost: 1, 5, 21, 10, 7

kolize - 1 blokuje místo pro 21

1. linear probing

2. double hashing

Pozn.: 1 a 21 jsou synonyma

často ale blokuje nesynonymum.

Kolize je blokování libovolným klíčem

Problém:

Algoritmizace
32/54

Řešení kolizí - Test Probe

◼ Test – Probe = určení, zda pozice v tabulce obsahuje klíč

shodný s hledaným klíčem

 search hit = klíč nalezen

 search miss = pozice prázdná, klíč nenalezen

 Jinak = na pozici je jiný klíč, hledej dál

◼ Otevřené rozptylování má komplikované mazání

 Smazání prvku může narušit posloupnost zaplněných

pozic

Algoritmizace
33/54

Řešení kolizí - Otevřené rozptylování

◼ Metoda řešení kolizí (solution of collisions)

 Linear probing == Lineární prohledávání

 Double hashing == Dvojí rozptylování

Algoritmizace
34/54

Řešení kolizí - Linear probing

0 5

1 1

2 21

3

4

h(k) = [(k mod 5) + i] mod 5 = (k + i) mod 5; i = 0;

posloupnost: 1, 5, 21, 10, 7

kolize - 1 blokuje

=> 1. linear probing

vlož o 1 pozici dál (i++ => i = 1)

Algoritmizace
35/54

Řešení kolizí - Linear probing

0 5

1 1

2 21

3 10

4

h(k) = (k + i) mod 5

posloupnost: 1, 5, 21, 10, 7

1. kolize - 5 blokuje - vlož dál

2. kolize - 1 blokuje - vlož dál

3. kolize - 21 blokuje - vlož dál

vloženo o 3 pozice dál (i = 3)

Algoritmizace
36/54

Řešení kolizí - Linear probing

0 5

1 1

2 21

3 10

4 7

1. kolize - vlož dál (i++)

2. kolize - vlož dál (i++)

vlož o 2 pozice dál (i = 2)

h(k) = (k + i) mod 5

posloupnost: 1, 5, 21, 10, 7

Algoritmizace
37/54

Řešení kolizí - Linear probing

h(k) = (k + i) mod 5

posloupnost: 1, 5, 21, 10, 7

0 5

1 1

2 21

3 10

4 7

i = 0

i = 0

i = 1

i = 3

i = 2

Algoritmizace
38/54

Řešení kolizí - Linear probing

0 5

1 1

2

3

4

h(k) = k mod 5

posloupnost: 1, 5, 21, 10, 7

kolize - 1 blokuje (collision-blocks)

Algoritmizace
39/54

Řešení kolizí - Linear probing

h(k) = (k + i.3) mod 5

posloupnost: 1, 5, 21, 10, 7

kolize - 5 blokuje - vlož dál

(vlož o 3 pozice dál (i = 1)

0 5

1 1

2

3 10

4 21

Algoritmizace
40/54

Řešení kolizí - Linear probing

h(k) = (k + i.3) mod 5

posloupnost: 1, 5, 21, 10, 7

i = 0

0 5

1 1

2 7

3 10

4 21

Algoritmizace
41/54

Řešení kolizí - Linear probing

h(k) = (k + i.3) mod 5

posloupnost: 1, 5, 21, 10, 7

i = 0

i = 0

i = 0

i = 1

i = 1

0 5

1 1

2 7

3 10

4 21

Algoritmizace
42/54

Řešení kolizí - Linear probing

h(k) = (k + i) mod 5 h(k) = (k + i.3) mod 5

i = 0

i = 0

i = 0

i = 1

i = 1

0 5

1 1

2 7

3 10

4 21

vhodná volba posunu

i∙3 je věcí náhody

0 5

1 1

2 21

3 10

4 7

i = 0

i = 0

i = 1

i = 3 !

i = 2

hrozí dlouhé shluky

(long clusters)

Algoritmizace
43/54

Řešení kolizí - Linear probing

private:

Item *ht; int N,M; [Sedgewick]

 Item nullItem;

public:

 init(int maxN) // initialization

 {

N=0; // Number of stored items

M = 2*maxN; // load_factor < 1/2

 ht = new Item[M];

 for(int i = 0; i < M; i++)

 ht[i] = nullItem;

 }...

Algoritmizace
44/54

Řešení kolizí - Linear probing

void insert(Item item)

{

int i = hash(item.key(), M);

while(!ht[i].null())

 i = (i+const) % M; // Linear probing

ht[i] = item;

N++;

}

Algoritmizace
45/54

Řešení kolizí - Linear probing

Item search(Key k)

{

int i = hash(k, M);

while(!ht[i].null()) { // !cluster end
 // zarážka (sentinel)

if(k == ht[i].key())

 return ht[i];

else

 i = (i+const) % M; // Linear probing

 }

return nullItem;

}

Algoritmizace
46/54

Řešení kolizí - Otevřené rozptylování

◼ Metoda řešení kolizí (solution of collisions)

 Linear probing == Lineární prohledávání

 Double hashing == Dvojí rozptylování

Algoritmizace
47/54

Řešení kolizí - Double hashing

Hash function h(k) = [h1(k) + i.h2(k)] mod m

h1(k) = k mod m // initial position

h2(k) = 1 + (k mod m’) // offset

m = prime number or

m’ = slightly less

If d = greatest common divisor => search m/d slots only

Ex: k = 123456, m = 701, m’ = 700

h1(k) = 80, h2(k) = 257 Starts at 80, and every 257 % 701

m = power of 2

m’ = odd

Both depend on k

=>

Each key has

different

probe sequence

Algoritmizace
48/54

Řešení kolizí - Double hashing

void insert(Item item)

{

Key k = item.key();

int i = hash(k, M),

j = hashTwo(k, M);// different for k1 != k2

while(!ht[i].null())

i = (i+j) % M; //Double Hashing

ht[i] = item; N++;

}

Algoritmizace
49/54

Řešení kolizí - Double hashing

Item search(Key k)

{

int i = hash(k, M),

j = hashTwo(k, M);// different for k1 != k2

while(!ht[i].null())

{

if(k == ht[i].key())

return ht[i];

else

i = (i+j) % M; // Double Hashing

}

return nullItem;

}

Algoritmizace
50/54

Řešení kolizí - Double hashing

Double hashing h(k) = [h1(k) + i.h2(k)] mod m

Input

h1(k)

= k

%11

h2(k)=

1+k

%10 i h(k)

1 1 2 0 1

25 3 6 0 3

23 1 4 0,1 1,5

45 1 6 0,1 1,7

102 3 3 0,1 3,6

20 9 1 0 9

1 2025 2310245

0 1 2 9 103 4 5 6 7 8

h1(k) = k % 11

h2(k) = 1 + (k % 10)

Algoritmizace
51/54

Řešení kolizí - Otevřené rozptylování

 = plnění tabulky (load factor of the table)

 = n/m,  0,1

n = počet prvků (number of items in the table)

m = velikost tabulky, m>n (table size)

Algoritmizace
52/54

Řešení kolizí - Otevřené rozptylování

Expected number of probes

◼ Linear probing:

 Search hits 0.5 (1 + 1 / (1 - )) found

 Search misses 0.5 (1 + 1 / (1 - )2) not found

◼ Double hashing:

 Search hits (1 / ) ln (1 / (1 - ))

 Search misses 1 / (1 - )

Algoritmizace
53/54

Řešení kolizí - Otevřené rozptylování

Očekávaný počet testů

Linear probing:

Plnění  1/2 2/3 3/4 9/10

Search hit 1.5 2.0 2.5 5.5

 Search miss 2.5 5.0 8.5 50.5

Double hashing:

Plnění  1/2 2/3 3/4 9/10

Search hit 1.4 1.6 1.8 2.6

 Search miss 2.0 3.0 4.0 10.0

Tabulka může být více zaplněná, než začne klesat výkonnost.

K dosažení stejného výkonu stačí menší tabulka.

Audience Q&A

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Slovník - Dictionary
	Snímek 5: Vyhledávání
	Snímek 6
	Snímek 7: Rozptylování - Hashing
	Snímek 8: Rozptylování - Hashing
	Snímek 9: Rozptylování - Hashing
	Snímek 10: Rozptylování - Hashing
	Snímek 11: Rozptylovací funkce h(k)
	Snímek 12: Rozptylovací funkce h(k)
	Snímek 13: Rozptylovací funkce h(k) – příklady
	Snímek 14: Rozptylovací funkce h(k) - reálná čísla
	Snímek 15: Rozptylovací funkce h(k) - celá čísla
	Snímek 16: Rozptylovací funkce h(k) - celá čísla
	Snímek 17: Rozptylovací funkce h(k) – řetězce
	Snímek 18: Rozptylovací funkce h(k) – řetězce
	Snímek 19: Rozptylovací funkce h(k) – řetězce
	Snímek 20: Rozptylovací funkce h(k) – chyba
	Snímek 21: Rozptylovací funkce h(k)
	Snímek 22
	Snímek 23: Řešení kolizí - Zřetězené rozptylování
	Snímek 24: Řešení kolizí - Zřetězené rozptylování
	Snímek 25: Řešení kolizí - Zřetězené rozptylování
	Snímek 26: Řešení kolizí - Zřetězené rozptylování
	Snímek 27: Řešení kolizí - Zřetězené rozptylování
	Snímek 28: Rehashing
	Snímek 29
	Snímek 30: Řešení kolizí - Otevřené rozptylování
	Snímek 31: Řešení kolizí - Otevřené rozptylování
	Snímek 32: Řešení kolizí - Test Probe
	Snímek 33: Řešení kolizí - Otevřené rozptylování
	Snímek 34: Řešení kolizí - Linear probing
	Snímek 35: Řešení kolizí - Linear probing
	Snímek 36: Řešení kolizí - Linear probing
	Snímek 37: Řešení kolizí - Linear probing
	Snímek 38: Řešení kolizí - Linear probing
	Snímek 39: Řešení kolizí - Linear probing
	Snímek 40: Řešení kolizí - Linear probing
	Snímek 41: Řešení kolizí - Linear probing
	Snímek 42: Řešení kolizí - Linear probing
	Snímek 43: Řešení kolizí - Linear probing
	Snímek 44: Řešení kolizí - Linear probing
	Snímek 45: Řešení kolizí - Linear probing
	Snímek 46: Řešení kolizí - Otevřené rozptylování
	Snímek 47: Řešení kolizí - Double hashing
	Snímek 48: Řešení kolizí - Double hashing
	Snímek 49: Řešení kolizí - Double hashing
	Snímek 50: Řešení kolizí - Double hashing
	Snímek 51: Řešení kolizí - Otevřené rozptylování
	Snímek 52: Řešení kolizí - Otevřené rozptylování
	Snímek 53: Řešení kolizí - Otevřené rozptylování
	Snímek 54

