Algoritmizace

Daniel Prtsa, Robert Pénicka
2025

Vyhledavani

Rozptylovani (Hashing)
Rozptylovaci funkce
Res3eni kolizi

Zretezene rozptylovani
Otevrené rozptylovani

Linear Probing
Double hashing

Algoritmizace

Prehled

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Join at slido.com
#2981433

010

Okt

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

—— Slovnik - Dictionary

Rada aplikaci potiebuje

dynamickou mnozinu

s operacemi: Search, Insert, Delete
= slovnik

Pfr. Tabulka symbolu pfekladace
identifikator | typ | adresa
suma | int | OxFFFFDCO09

Algoritmizace

Vyhledavani

!

asociativni

—Nalezeno, kdyz klic_prvku = hledany kliC
—napf. sekvencni vyhledavani, BVS,...

_

|N 4
avani
)

1 4

—kliC je pfimo indexem (adresou)
—rozsah kli€l ~ rozsahu indexu

@dresnl' vyhled

—vypoctem adresy z hodnoty klice

Algoritmizace

Jaky vyhledavaci
algoritmus by byl

vyrazne urychlen
O-| wvyuzitim Hashingu?

® The Slido app must be installed on every computer

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

" S - .
Rozptylovani - Hashing

kompromis mezi rychlosti a spotfrebou pameéti
« Casu - sekvencni vyhledavani
o pameti - pfimy pristup (indexovani klicem)
malo Casu | pameéti
Hashing
velikost tabulky reguluje Cas vyhledani

Algoritmizace

" - .
Rozptylovani - Hashing

Konstantni oCekavany Cas pro vyhledani a vkladani
(search and insert) !

Neéco za néeco:
cas provadeni ~ delce klice
neni vhodné pro operace vybéru podmnoziny a
razeni (select a sort)

Algoritmizace

" S - .
Rozptylovani - Hashing

pouzité klice / K

mozné klice # Universum klicu

Rozptylovani vhodné pro |K| << |U|

K mnozina pouzitych klicu

U universum klicu

Algoritmizace

Rozptylovani - Hashing

010 T— .10 |10
@ h2h.. |1 |21

.

un?®

h(k)

>

Dvé faze

1. Vypocet rozptylovaci funkce h(k)

(h(k) vypocita adresu z hodnoty kliCe)
2. Vyreseni kolizi

h(31) kolize: index 1 jiz obsazen

Algoritmizace

" S :
Rozptylovaci funkce h(k)

Zobrazuje mnozinu klicu K € U

do intervalu adres A = <a_,, a,,.,>, obvykle <0,M-1>
|U| >> |K| =|A|

(h(k) Vypocita adresu z hodnoty klice)

Synonyma: k, # k,, h(k,) = h(k,)

= kolize

Algoritmizace

" S :
Rozptylovaci funkce h(k)

Je silné zavisla na vlastnostech klicu a jejich reprezentaci v
pameti

|ldealné:
vypocetné co nejjednodussi (rychla)
aproximuje nahodnou funkci
vyuzije rovnomeérne adresni prostor
generuje minimum kolizi
proto: vyuziva vsechny slozky klice

Algoritmizace

" SRozptylovaci funkce h(k) - pFiklady

Priklady funkce h(k) pro rizné typy klicu
realna Cisla
cela Cisla
Bitova
retézce

Chybna rozptylovaci funkce

Algoritmizace

) mci funkce h(k) - realna cCisla

Pro realna cisla z intervalu <0, 1>

multiplikativni: h(k,M) = round(k * M)
neoddeli shluky blizkych Cisel (s rozdilem < 1/M)
M = velikost tabulky (table size)

Algoritmizace

) movaci funkce h(k) - cela Cisla

Pro cela cCisla

multiplikativni: (kde M je prvocislo, klice maji w bit()
h(k,M) = round(k /2% * M)

modularni:
h(k,M) =k % M

kombinovana:
h(k,M) =round(c*k) % M, c €<0,1>
h(k,M) = (int)(0.616161 *k) % M
h(k,M) = (16161 * k) % M // pozor na preteCeni

Algoritmizace

) movaci funkce h(k) - cela Cisla

Rychl3, silné zavisla na reprezentaci klict

h(k) = k & (M-1) kde M = 2x(neni prvocislo),
& je bitovy soucin
je totéz jako

h(k) = k% M, tj.pouzije x nejnizsSich bitl klice

Algoritmizace

] mﬂovaci funkce h(k) - retezce

Pro retézce (for strings):
int hash(char *k, int M) {
inth=0,a=127;
for(; *k 1= 0; k++)
h=(a*h+*k)%M,;
return h;

}

Hornerovo schéma :
P(a)= k,*a* + k;*a3 +k,*a?+k,*a' +k,* a°

= (((ky "a + k3)"a + k;)*a + ky)*a + k,
Vypocet hodnoty polynomu P v bodé a, koeficienty P

jsou jednotlivé znaky (jejich Ciselna hodnota) v fetézci *k.

Algoritmizace

] mﬂovaci funkce h(k) - retezce

Pro retezce (for strings) Java:

public int hashCode(String s, int M) {
inth =0;
for(inti=0;i<s.length(); i++)
h =31 * h + s.charAt(i);
return h;

Hodnota konstant 127, 31 prispiva rovhomernému
psoudonahodnému rozptyleni.

Algoritmizace

" ISSRozptylovaci funkce h(k) - Fetézce

Pro retézce: (pseudo-) randomizovana

int hash(char *k, int M){
inth=0,a=31415; b = 27183,;
for(; *k 1=0; k++,a=a*b % (M-1))
h=(a*h+*k) % M;
return h;

Algoritmizace

) qﬂtylovaci funkce h(k) - chyba

Casta chyba:

funkce vracr stale nebo vetsinou stejnou hodnotu
chyba v konverzi typ(
funguje, ale vraci blizké adresy

proto generuje hodné kolizi

=> gplikace je extréemne pomala, reseni kolizi zdrzuje.

Algoritmizace

" S :
Rozptylovaci funkce h(k)

Kazda hashovaci funkce ma slaba mista, kdy pro ruzné klice
dava stejnou adresu

Univerzalni hashovani

Misto jedné hashovaci funkce h(k) mame konecCnou
mnozinu H funkci mapujicich U do intervalu {0, 1, ..., m-1}

Pri spusteni programu jednu nahodné zvolime

Tato mnozina je univerzalni, pokud pro ruzné klice x,y € U
vraci stejnou adresu h(x) = h(y) prfesné v |H|/m pfipadech

Pravdepodobnost kolize pri nahodnéeém vybéru funkce h(k)
je tedy presné 1/m

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

.] 1 4 \'4 \'4 4) 4 4
S REgen Kolizi - Zretézené rozptylovani

h(k) = kmod 3
posloupnost : 1, 5, 21, 10, 7

heads link

0 121]\ Vklada se na zadatek
1 7 10 1 \
2 5 |\

seznamy synonym

Algoritmizace

.] Y 4 A4 \'4) 4 J 4 4
R REseni kolizi - Zietézené rozptylovani

private:
link* heads; int N,M; [Sedgewick]

public:
init(int maxN) // initialization
{
N=0; // No. of nodes
M = maxN / 5; // table size
heads = new link[M]; // table with pointers

for(int 1 = 0; 1 < M; i++)
heads[i] = null;

Algoritmizace

.] Y 4 A4 \'4) 4) 4 4
R REEen Kolizi - Zietézené rozptylovani

Item search(Key k)

{
return searchList(heads[hash(k, M)], k);

void insert(Item item) // VKIAd4 se na zadatek

{
int i = hash(item.key(), M);
heads[i1] = new node(item, heads[1i])
N++;

Algoritmizace

.] 1 4 \'4 \'4 4) 4 4
S REgen Kolizi - Zretézené rozptylovani

n = pocet prvku, m = velikost tabulky, m<n.

Retéz synonym ma idealné délku o =n/m, o. >1 (pInéni tabulky)

velmi nepravdepodobny

Insert 1(n) = toeqp + i = O(1) extrem

Search Q(n) = t.on T tecarch / prumeérné
= thpen + £ N/(2M) = O(n) O(1 +)

Delete D(n) = tasn + tscarcn + tink = O(n) O(1 + a)

pro mala a (velka m) se hodneé blizi O(1) !!!

pro velka o (mala m) m-nasobné zrychleni vigci
sekvencnimu hledani.

Algoritmizace

.] 1 4 \'4 \'4 4) 4 1 4
S REgen Kolizi - Zretézené rozptylovani

Praxe: volit m = n/5 az n/[10 => plnéni a = 10 prvku / retéz
vyplati se hledani sekvencné (je kratké)

neplytva nepouzitymi ukazateli

Shrnuti:
+ nemusime znat n predem
— potrebuje dynamicke pridelovani pameti

— potrebuje pamet na ukazatele a na tabulku[m]

Algoritmizace

Rehashing

Zveétseni hashovaci tabulky pri jejim nadmerném zaplnéni
Nova vétSi tabulka pouziva jinou hashovaci funkci

Potreba rozlozit pozadovany vykon na rehashing mezi vice
volani nad tabulkami

Presun z puvodni tabulky po jednotlivych prvcich

Po néjakou dobu treba udrzovat dve tabulky, jak tu
,Zaplnénou“ tak tu novou

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

" REsen Kolizi - Oteviené rozptylovani

Otevrene rozptylovani (open-address

hashing)
0| 5
Zname predem pocet prvkl (odhad) nechceme 1 1
ukazatele (v prvcich ani tabulku) => posloupnost do
pole 2 | 21
Podle tvaru hashovaci funkce A(K) pri kolizi: 310
1. linearni prohledavani (linear probing) 4

2. dvoiji rozptylovani (double hashing)

Algoritmizace

" REsen Kolizi - Oteviené rozptylovani

A K) = kmod 5 (KW K) = kmod m, mje rozmér pole)
posloupnost: 1, 5, 21, 10, 7

5 J Problem:
J J kolize - 1 blokuje misto pro 21

1 1. linear probing

2. double hashing

Pozn.: 1 a 21 jsou synonyma

Hp O N = O

casto ale blokuje nesynonymum.
Kolize je blokovani libovolnym klicem

Algoritmizace

", I Reseni kolizi - Test Probe

Test — Probe = urceni, zda pozice v tabulce obsahuje klic
shodny s hledanym klicem

search hit = kliCc nalezen
search miss = pozice prazdna, kliCc nenalezen
Jinak = na poazici je jiny klic, hledej dal

Otevrené rozptylovani ma komplikované mazani

Smazani prvku muze narusit posloupnost zaplnénych
pozic

Algoritmizace

.] Y 4 A4 y J 4 1 4
S REgeni Kolizi - Oteviené rozptylovani

Metoda reseni kolizi (solution of collisions)
Linear probing == Linearni prohledavani
Double hashing == Dvoji rozptylovani

Algoritmizace

" oIS Regeni kolizi - Linear probing

AKk)=[(kmod5)+i]mod5=(k+i)mod5;i=0;
posloupnost: 1,5, 21,10, 7

o 5 J |
1 e kolize - 1 blokuje

=> 1. linear probing

21 T

vloz o 1 pozici dal (i++=>i=1)

W N -

Algoritmizace

" S Regeni kolizi - Linear probing

h(k) = (k +i) mod 5
posloupnost: 1,5,21,10, 7

0 5 |<J «%1 1. kolize - 5 blokuje - vloZz dal
<><

1 % 2. kolize - 1 blokuje - vioZ dal

21 - 3. Kolize - 21 blokuje - vloz dal

10 1 vlozeno o 3 pozice dal (i = 3)

O N =

Algoritmizace

" S Regeni kolizi - Linear probing

A Kk) = (k+i)mod5
posloupnost: 1,5, 21, 10, 7

— vloz o 2 pozice dal (i = 2)

0| 5 JJ a

1 1 . >< <><

2| 21 <)X <k| 1. kolize - vioz dal (i++)
3110 — & 2. kolize - vloz dal (i++)
4

7

Algoritmizace

" oIS Reseni kolizi - Linear probing

h(k) = (k +i) mod 5
posloupnost:. 1,5, 21,10, 7

0| 5| i=0
11 1 =0
2| 21 1=1
3/ 10) 1=3
4| 7| 1=2

Algoritmizace

" oIS Reseni kolizi - Linear probing

A Kk) = kmod 5
posloupnost: 1,5, 21,10, 7
S |ﬂ
kolize - 1 blokuje (collision-blocks)

1

W DN -

Algoritmizace

" S Regeni kolizi - Linear probing

AK) = (k+i.3) mod5
posloupnost: 1,5, 21, 10, 7

0| 3 JJ “X kolize - 5 blokuje - vloZ dal
1 < ><

10 —— (vloz o 3 pozice dal (i = 1)

W N -

21 T

Algoritmizace

" oIS Regeni kolizi - Linear probing

h(k) = (k +i.3) mod 5
posloupnost: 1, 5, 21,10, 7

0 5 JJ X
1 <><

7 -« 1=0

10 T
21 T

A O N -

Algoritmizace

" S Regeni kolizi - Linear probing

h(k) = (k +i.3) mod 5
posloupnost. 1,5, 21,10, 7

0| 5 1=0
1] 1 =0
2| 7 =0
3|10 =1
4 | 21 | =1

Algoritmizace

" S Regeni kolizi - Linear probing

AKk)=(k+1i)mod>5 MKk =(k+i3)mod5

0| 5 1=0 0| 5 1=0

11 1 1=0 1 1 1=0

2| 21 =1 2| 7 1=0

3| 10 =3 3| 10 =1

4| 7 | =2 4 | 21 =1
hrozi dlouhé shluky vhodna volba posunu

(long clusters) I-3 je véci nahody

Algoritmizace

" oIS Reseni kolizi - Linear probing

private:
Item *ht; int N ,M; [Sedgewick]
Item nullItem;

public:
init(int maxN) // initialization
{
N=0; // Number of stored items
M = 2*maxN; // load factor < 1/2
ht = new Item[M];

for(int 1 = 0; 1 < M; i++)
ht[i] = nullItem;

Algoritmizace

" oIS Regeni kolizi - Linear probing

void insert(Item item)

{
int i = hash(item.key(), M);

while('ht[i] .null ())

i = (i+const) % M; // Linear probing

ht[i]
N++;

item;

Algoritmizace

" oIS Regeni kolizi - Linear probing

Item search(Key k)

{
int 1 = hash(k, M);

while('ht[i] .null()) { // 'cluster end
zarazka (sentinel)

if(k == ht[i] .key ())
return ht[i];
else
i = (i+const) % M; // Linear probing

return nullItem;

Algoritmizace

.] Y 4 A4 y J 4 1 4
S REgeni Kolizi - Oteviené rozptylovani

Metoda reseni kolizi (solution of collisions)
Linear probing == Linearni prohledavani
Double hashing == Dvoji rozptylovani

Algoritmizace

" oI Reseni kolizi - Double hashing

Hash function h(k) = [h,(k) + i.hy(k)] mod m

h,(k) = k mod m // initial position } Both depend on k

hy(k) =1+ (kmod m’) [/ offset =>
Each key has
different
m = prime number or m = power of 2 probe sequence

m’ = slightly less m’ = odd

If d = greatest common divisor => search m/d slots only

Ex: k=123456, m=701, m =700
h,(k) = 80, h,(k) = 257 Starts at 80, and every 257 % 701

Algoritmizace

" = Regeni kolizi - Double hashing

void insert(Item item)

{

Key k = item.key() ;
int 1 = hash(k, M),
J = hashTwo(k, M) ;// different for k; !'= k,

while('ht[i] .null ())
i= (i+j) % M; //Double Hashing

ht[i] = item; N++;
}

Algoritmizace

" = Regeni kolizi - Double hashing

Item search(Key k)
{
hash(k, M),

int 1
] hashTwo(k, M) ;// different for k;, !'= k,

J:
while('ht[i] .null ())
{
if(k == ht[i] .key())
return ht[i];
else
i = (i+j) % M; // Double Hashing
}

return nullItem;

Algoritmizace

" = Regeni kolizi - Double hashing

Double hashing A(K) = [A,(K) + i.h(k)] mod m

Input

25
23
45
102
20

9 10

hi(k) | hy(k)=
k| Ik ! !’\
%11 (%10 |i |hk) | o | . €. X, 4 ¥
2 0 |1 1] [25] [23f10d45] |20
T _T
6 0 3 S ———
4 0115 — —
6 0,1[1,7 hy(k) = k % 11
3 0,113.,6
’ ! h(kY=1+ (k% 10
S (k) =1+ (k% 10

Algoritmizace

.] Y 4 A4 y J 4 1 4
R SREseni kolizi - Oteviené rozptylovani

o = plnéni tabulky (/oad factor of the table)

o =n/m, o €{(0,1)

n = pocet prvku (number of items in the table)

m = velikost tabulky, m>n (table size)

Algoritmizace

" REsen Kolizi - Oteviené rozptylovani

Expected number of probes

Linear probing:
Search hits 05(1+1/ (1-a)) found
Search misses 0.5(1+1/ (1-0)?) notfound

Double hashing:
Search hits (1/a)In(1/ (1-a))
Search misses 1/ (1-a)

Algoritmizace

" REsen Kolizi - Oteviené rozptylovani

Ocekavany pocet testll
Linear probing:

Plnéni a 1/2 2/3 3/4 9/10
Search hit 1.5 2.0 5.5
Search miss 2.5 5.0 8.5 50.5

Double hashing:

Plnéni o 1/2 2/3 3/4 9/10
Search hit 1.4 1.6 1.8
Search miss 2.0 3.0 4.0 10.0

Tabulka muze byt vice zaplnéna, nez zaéne klesat vykonnost.

K dosazeni stejného vykonu staci mensi tabulka.

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Audience Q&A

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Slovník - Dictionary
	Snímek 5: Vyhledávání
	Snímek 6
	Snímek 7: Rozptylování - Hashing
	Snímek 8: Rozptylování - Hashing
	Snímek 9: Rozptylování - Hashing
	Snímek 10: Rozptylování - Hashing
	Snímek 11: Rozptylovací funkce h(k)
	Snímek 12: Rozptylovací funkce h(k)
	Snímek 13: Rozptylovací funkce h(k) – příklady
	Snímek 14: Rozptylovací funkce h(k) - reálná čísla
	Snímek 15: Rozptylovací funkce h(k) - celá čísla
	Snímek 16: Rozptylovací funkce h(k) - celá čísla
	Snímek 17: Rozptylovací funkce h(k) – řetězce
	Snímek 18: Rozptylovací funkce h(k) – řetězce
	Snímek 19: Rozptylovací funkce h(k) – řetězce
	Snímek 20: Rozptylovací funkce h(k) – chyba
	Snímek 21: Rozptylovací funkce h(k)
	Snímek 22
	Snímek 23: Řešení kolizí - Zřetězené rozptylování
	Snímek 24: Řešení kolizí - Zřetězené rozptylování
	Snímek 25: Řešení kolizí - Zřetězené rozptylování
	Snímek 26: Řešení kolizí - Zřetězené rozptylování
	Snímek 27: Řešení kolizí - Zřetězené rozptylování
	Snímek 28: Rehashing
	Snímek 29
	Snímek 30: Řešení kolizí - Otevřené rozptylování
	Snímek 31: Řešení kolizí - Otevřené rozptylování
	Snímek 32: Řešení kolizí - Test Probe
	Snímek 33: Řešení kolizí - Otevřené rozptylování
	Snímek 34: Řešení kolizí - Linear probing
	Snímek 35: Řešení kolizí - Linear probing
	Snímek 36: Řešení kolizí - Linear probing
	Snímek 37: Řešení kolizí - Linear probing
	Snímek 38: Řešení kolizí - Linear probing
	Snímek 39: Řešení kolizí - Linear probing
	Snímek 40: Řešení kolizí - Linear probing
	Snímek 41: Řešení kolizí - Linear probing
	Snímek 42: Řešení kolizí - Linear probing
	Snímek 43: Řešení kolizí - Linear probing
	Snímek 44: Řešení kolizí - Linear probing
	Snímek 45: Řešení kolizí - Linear probing
	Snímek 46: Řešení kolizí - Otevřené rozptylování
	Snímek 47: Řešení kolizí - Double hashing
	Snímek 48: Řešení kolizí - Double hashing
	Snímek 49: Řešení kolizí - Double hashing
	Snímek 50: Řešení kolizí - Double hashing
	Snímek 51: Řešení kolizí - Otevřené rozptylování
	Snímek 52: Řešení kolizí - Otevřené rozptylování
	Snímek 53: Řešení kolizí - Otevřené rozptylování
	Snímek 54

