Algoritmizace

Daniel Prtsa, Robert Pénicka
2025

S P‘r',ehled

Srustajici hashovani
LISCH (late insert standard coalesced hashing)
EISCH (early insert standard coalesced hashing)
LICH (late insert coalesced hashing)
EICH (early insert coalesced hashing)
VICH (variable insert coalesced hashing)

Algoritmizace

O

(o}
Oé:%@ ’)o
\9{%)/6 ‘e ©
C b
X
o
//3@

Join at slido.com
#3276540

010

Okt

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

) mshovéni -- coalesced hashing

Jde o metodu reseni kolizi, nezalezi na konkrétni
podobé hashovaci funkce h(k).

Synonyma (po kolizi) se ukadaji do jednosmérného

spojového seznamu synonym. VSechny seznamy

jsou "propletené” ulozeny pfimo v tabulce.

Tabulka ke kazdému kli¢i obsahuje ukazatel
na dalsi kli¢ v seznamu.
Kazdy kli€ je sou€asti nékterého seznamu synonym.

Pri vyhledavani se postupuje stejnée
jako pri vkladani, v podstaté jde
o linearni prohledavani spojového seznamu.

0| Ann

— 10

Cole

5 9

3| Ben

5 6

Algoritmizace

Gene

> 4

Dana

3 5

Irma

5 8

Hugo

7

Edna

Fred

© 0N OO O A WODN =~ O

10

Ann

10

f—

Ben

Irma

1

Hugo

Gene

Fred

Edna

Dana

Cole

- Meﬂ standard coalesced hashing)

Name | Next

Hashovaci funkce h, data d.
Pozice p := h(d);

Prohledej seznam zac€inajici na
pozici p a pokud nenajdes d,
pridej d do tabulky na prvni volné
misto od konce tabulky a pripoj ho
do seznamu synonym d

na posledni misto.

Ukazatel na prvni volné
misto od konce tabulky.
Po kazdém pridani prvku
se aktualizuje.

© 00 N OO G A~ WODN =~ O

!

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |
h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 8‘ 7‘

Algoritmizace

- Mert standard coalesced hashing)

f—

0| Ann| -- 0| Ann| -- 0Of Ann| 9

1 1 1

2 2| Ben| -- 2| Ben| --

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 £ 8

B9 B9 9| Cole| --[*

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 8‘ 7‘

Algoritmizace

- Mert standard coalesced hashing)

0| Ann| 9] 0| Ann| 9] 0| Ann| 9[]
1 1 1
2| Ben| -- 2| Ben| -- 2| Ben| 8
3 3| Dana| -- 3| Dana| --
4 4 4
5 5 5
6 6 6
7 7 7
£ 8 0 8 8| Edna| --
9| Cole| --« 9| Cole| --« 9| Cole| -«
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 8‘ 7‘

Algoritmizace

- Meﬂ standard coalesced hashing)

0| Ann| 9 0| Ann| 9M 0Of Ann| 9

1 1 1

2| Ben| 8 2| Ben| 8 2| Ben| 8

3| Dana| -- 3| Dana| -- 3| Dana| --

4 4 4

5 5 5

6 £ 6 6| Gene| --
B 7 7| Fred| - 7| Fred| 6

8| Edna| -- 8| Edna| -- 3 8| Edna| --

9| Cole| -- 9| Cole| 7 9| Cole| 7

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 8‘ 7‘

Algoritmizace

- Meﬂ standard coalesced hashing)

J

0| Ann| 9 0Of Ann| 9 0| Ann| 9

1 1 B 1

2| Ben| 8 2| Ben| 8 2| Ben| 8

3| Dana| -- 3| Dana| -- 3| Dana| --

4 £ 4 4| Irma| --[*
5 5| Hugo| -- 5| Hugo| -

6| Gene| --[* 6| Gene| --[* 6| Gene| 5

7| Fred| 6« 7| Fred| 6« 7| Fred| 6 €

8| Edna| -- |« 8| Edna| 5[E& 8| Edna| 5 J

9| Cole| 7= 9| Cole| 7= 9| Cole| 7=

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2|

0]

3]

2|

°|

0]

8|

7]

- Meﬂ standard coalesced hashing)

Name | Next

Hashovaci funkce h, data d.
Pozice p := h(d);

Prohledej seznam zac€inajici na
pozici p a pokud nenajdes d,
pridej d do tabulky na prvni volné
misto od konce tabulky a pripoj ho
do seznamu synonym d

za prvni misto.

Ukazatel na prvni volné
misto od konce tabulky.
Po kazdém pridani prvku
se aktualizuje.

© 00 N OO G A~ WODN =~ O

!

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |
h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 2‘ 6‘

Algoritmizace

- Mert standard coalesced hashing)

f—

0| Ann| -- 0| Ann| -- Of Ann| 9

1 1 1

2 2| Ben| -- 2| Ben| --

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 £ 8

B9 B9 9| Cole| --[*

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 2‘ 6‘

Algoritmizace

- Mert standard coalesced hashing)

0| Ann| 9] 0| Ann| 9] 0| Ann| 9[]
1 1 1
2| Ben| -- 2| Ben| -- 2| Ben| 8
3 3| Dana| -- 3| Dana| --
4 4 4
5 5 5
6 6 6
7 7 7
£ 8 0 8 8| Edna| --
9| Cole| --« 9| Cole| --« 9| Cole| -«
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 2‘ 6‘

Algoritmizace

- Mert standard coalesced hashing)

0| Ann| 9 0| Ann| 9M 0| Ann

1 1 1

2| Ben| 8 2| Ben| 8 2| Ben

3| Dana| -- 3| Dana| -- 3| Dana| --

4 4 4

5 5 5

6 £ 6 6| Gene
7 7| Fred| -- 7| Fred| --

8| Edna| -- 8| Edna| -- 3 8| Edna| --

9| Cole| -- 9| Cole| 7 9| Cole

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 2‘ 6‘

Algoritmizace

- Mert standard coalesced hashing)

0| Ann| 6
1
2| Ben| 8
3| Dana| --
4

55
6| Gene| 9 <
7| Fred| --[*
8| Edna| -- |«
9| Cole| 7=
data

© 00N O O~ WOWDNN -~ O

Ann

Ben

Dana

Hugo

Gene

A

Fred

Edna

Cole

2

© 00N o A WDN -~ O

Ann

Ben

Dana

Irma

Hugo

Gene

Fred

Edna

Cole

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2|

0]

3]

2|

°|

0]

2|

°|

- Meﬂ standard coalesced hashing)

Inseﬂﬂ+ugo)]

© 00 N O O A WDN -~ O

data

Ann

Ben

Dana

Gene

A

Fred

1

Edna

Cole

N © o O

Ann

Gene

Cole

Fred

gl il k|

Ben

Edna

© 0 N O O A ODN - O

Ann

Ben

Dana

Hugo

Gene

A

Fred

Edna

Cole

N © o o

Ann

Gene

Cole

Fred

T AAaJuJ

Ben

Hugo

Edna

L K

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2|

0]

2|

°|

0]

2|

o]

- Meﬂ standard coalesced hashing)

Insert(lrma) J

O/ Ann| 6 0| Ann [O Ann| 6 0| Ann M
1 6/Gene o 1 6/Gene
2| Ben| 5 9| Cole & 2| Ben| S 4|Irma &<
3| Dana| -- 3| Dana| --

2 4 7| Fred € 4l rmal o 9| Cole &
5| Hugo| 8 5| Hugo| 8 7| Fred [©
6| Gene| 9 6| Gene| 4
7| Fred| --[¢ 2| Ben :I 7| Fred| -- 2| Ben :I
8| Edna| - |« 5|Hugo 8| Edna| - 5|Hugo
9| Cole| 7— 8 Edna‘j 9| Cole| 7 8 Edna:’l

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ 3‘ 2‘ 9‘ o‘ 2‘ 6‘

Algoritmizace

O

)
" S
\Q/) Res @
X
Q
%

Audience Q&A was
removed

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

|
ml hashovani s pomocnou pameti

Mate sklep? A mohla bych ho vidét?

=

Kulovy blesk (1979) - https://youtu.be/O-t0WiiQg482si=1NZqi7y7ERTWixy

Algoritmizace

https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy

|
m%m hashovani s pomocnou pameti

Pro snizeni srustani a tedy zvySeni efektivity hashovani se
tabulka rozsSifuje o pomocnou pamét - tzv. sklep (cellar).

Sklep je misto na konci tabulky, které neni adresovatelné
hashovaci funkci, ma ale stejnou strukturu jako cela tabulka.

Algoritmy LICH a EICH jsou analogicke varianty algoritmu
LISCH a EISCH s pfidanim sklepa. Po naplnéni sklepa
pokracuje plnéni jako v LISCH a EISCH.

Algoritmus VICH (variable insert coalesced hashing) pripojuje
prvek za posledni prvek seznamu, ktery je jesté ve sklepé.
Pokud ve sklepé zadny neni, vklada jako EISCH, tj. hned za
kolidujici prvek v seznamu.

Algoritmizace

L e & (7 (late insert coalesced hashing)

0| Ann| -- 0| Ann| -- 0| Ann|10
1 1 1
2 2| Ben| -- 2| Ben| --
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 59
10 10 10| Cole| --
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ 5‘ 8‘

Algoritmizace

L e & (7 (late insert coalesced hashing)

0| Ann(10[™
1
2| Ben| --
3
4
5
6
7
8
59
10| Cole| -|
data

N OO o A WO DN - O

4

Ann

10

Ben| --

(o]

10

Dana| --

Cole

9

Ann

10

Ben

Edna| --

Dana| --

Cole

9

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2]

0]

0]

2|

0]

7]

J

8|

L e & (7 (late insert coalesced hashing)

0| Ann(10[™ 0| Ann|{10 0| Ann (10—

1 1 1

2| Ben| 8 2| Ben| 8 2| Ben| 8

3 3 3

4 4 4

5 5 5

6 £ 6 6 | Gene| --
)7 7 | Fred| -- 7 | Fred 6:—]:'

8 |Edna| --[* 8 |[Edna| -- 8 |Edna| -- [

9 |Dana| --|« 9 |Dana| 7 9 |Dana| 7«

10| Cole| 9= 10| Cole| 9 10| Cole| 9=

data | Ann | Ben | Cole| Dana| Edna| Fred | Gene| Hugo| Irma|

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ 5‘ 8‘

Algoritmizace

L e & (7 (late insert coalesced hashing)

0| Ann|{10 0| Ann|{10 0| Ann|(10
1 1 1
2| Ben| 8 2| Ben| 8 2| Ben| 8
3 3 53
4 4 4| Irma| --
Iﬁ>5 5 (Hugo | -- 5 ([Hugo| --
6 |Gene| -- 6 |Gene| -- 6 |Gene| --
7| Fred| 6= 7| Fred| 6 7| Fred| 6
8 | Edna| -- 8 |[Edna| -- 8 |[Edna| 4]
9 | Dana| 7 9 Dana| 7 9 |Dana| 7 <
10| Cole| 9 10| Cole| 9 10| Cole| 9
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ 5‘ 8‘

Algoritmizace

- q'(early insert coalesced hashing)

0| Ann| -- 0| Ann| -- 0| Ann|10
1 1 1
2 2| Ben| -- 2| Ben| --
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 59
10 10 10| Cole| --
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ o‘ 8‘

Algoritmizace

- q(early Insert coalesced hashing)

Ann

10

Ben| --

0 N O g~ WOWDNN -~ O

b4

-
(=)

Cole| --

data

N OO o A WO DN - O

4

Ann

9

Ben| --

(o]

10

Dana

10

Cole| --

Ann

Ben

Edna| --

Dana

10

Cole| --

’tlt‘ ’

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2]

0]

0]

2|

0]

7]

0]

8|

- q(early Insert coalesced hashing)

0| Ann| 9™ 0| Ann| 7 0| Ann| 7™

1 1 1

2| Ben| 8 2| Ben| 8 2| Ben| 8

3 3 3

4 4 4

5 5 5

6 £ 6 6 | Gene 9':":T
7 7| Fred| 9 7 | Fred| 6=

8 |Edna| --[* 8 |Edna| -- 8 |Edna| --[—

9 | Dana [10 [9 | Dana |10 9 | Dana 10T

10| Cole| -- [« 10| Cole :l 10| Cole| --

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |
h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ o‘ 8‘

data

Algoritmizace

"o (early insert coalesced hashing)

0| Ann| 7 0| Ann| 5 0| Ann
1 1 1
2| Ben| 8 2| Ben| 8 2| Ben
3 3 53
4 4 4 | Irma
Iﬁ>5 5 |[Hugo| 7 5 |Hugo
6 |Gene| 9|« 6 |Gene| 9| 6 | Gene
7| Fred| 6 = 7| Fred| 6 7 | Fred
8 |Edna| --[*— 8 |Edna| --[*— 8 | Edna
9 [Dana |10 .5 9 [Dana |10 .5 9 | Dana
10| Cole --:I 10| Cole --:l 10| Cole
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 7‘ o‘ 8‘

Algoritmizace

- miable insert coalesced hashing)

0| Ann| -- 0| Ann| -- 0| Ann|10
1 1 1
2 2| Ben| -- 2| Ben| --
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 59
10 10 10| Cole| --
data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 2‘ o‘ 6‘

Algoritmizace

- mriable insert coalesced hashing)

0| Ann(10[™
1
2| Ben| --
3
4
5
6
7
8
59
10| Cole| -|
data

N OO o A WO DN - O

4

Ann

10

Ben| --

(o]

10

Dana| --

Cole

9

Ann

10

Ben

Edna| --

Dana| --

Cole

9

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

2|

0]

0]

2|

0]

2|

0]

o]

- Mriable insert coalesced hashing)

0| Ann(10[™ 0| Ann|{10 0| Ann (10—

1 1 1

2| Ben| 8 2| Ben| 8 2| Ben| 6=

3 3 3

4 4 4

5 5 5

6 £ 6 6 | Gene 8=::|
7 7 | Fred| - 7 | Fred| --|e

8 |Edna| --[* 8 | Edna| -- 8 | Edna| --

9 |Dana| --|« 9 |Dana| 7 9 |Dana| 7«

10| Cole| 9= 10| Cole| 9 10| Cole| 9=

data | Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data)‘ o‘ 2‘ o‘ o‘ 2‘ o‘ 2‘ o‘ 6‘

Algoritmizace

- mriable insert coalesced hashing)

H W N - O

55
6
7

8

Ann

10

Ben

Gene

Fred

Edna

9
10

Dana

Cole

\%
Hp WO NN -~ O

0 N O O

Ann

10

Ben

Hugo

Gene

Fred

Edna

(o]

10

Dana

Cole

N

Ann

10

Ben

Irma

Hugo

Gene

Fred

Edna

Ol N O O b~

10

Dana

Cole

J

data

| Ann | Ben | Cole | Dana | Edna | Fred | Gene | Hugo | Irma |

h(data) ‘

Algoritmizace

0]

0]

0]

2|

0]

°|

. 4) 4 A4 Y 4
mshovam S pomocnou pameti

1.00

0.95

0.90

0.85

Optimum address factor, Sgpr

e
@®
o

0.75

SUCCESSFUL

[) I S T |

SA |H

i)
1

T 1T 1T 1

11 1 1

11 31 1 111

AN

0 0.2

Algoritmizace

0.4 0.8
Load Factor &«

0.8 1

a — faktor naplnéni (load factor)
a=N/M

B - faktor adresovani (address factor)
B= M/M’

K =M’ - M = velikost sklepa

N - pocet vloZenych prvki

M’ - poCet mist v hashovaci tabulce

M - pocet mist adresovatelnych hashovaci
funkci

Krivky predstavuji optimalni volbu 3
v zavislosti na daném « pri operaci FIND.

Pripady:
SUCCESSFUL - Kli€ je v tabulce
UNSUCCESSFUL - kli¢ neni v tabulce

LR

H r r (*] nrs 4 4 4
CeIkove srovnani srustajiciho hashovani

-

20

ERNr

/

18

18

14

B

Average no. probes per unsuccessful search

Average no. probes per successful search
i 1 I \I\\l T L

1.2
1‘0h||||||||1||1|11|1|11- 10 Ll 111 W VOO O VO T N N N T T I |
06 08 o7 0.8 0.8 i 0.6 0.6 0.7 08 0.9 1
Load Factor a Load Factor o

S pouzitim sklepa vychazi nejlépe VICH. Doporucena velikost B je 0,86.

Bez sklepa vychazi nejlépe EISCH.

Algoritmizace

e Efektivita srustajiciho hashovani

a 0.2 0.4 0.6 0.8 0.9 0.95 0.99
method
EISCH 1.1065 1.2277 1.3684 1.5290 1.6182 1.6653 1.7033
LISCH 1.1063 1.2316 1.3789 1.5657 1.6737 1.7337 1.7827
BEISCH 1.1055 1.2286 1.3721 1.5336 1.6236 1.6728 1.7107
BLISCH 1.1055 1.234]1 1.3836 1.5703 1.6818 1.7423 1.7898
REISCH 1.1063 1.2322 1.3693 1.5257 1.6124 1.6614 1.7014
RLISCH 1.1085 1.2384 1.3876 1.5653 1.6723 1.7296 1.7790
‘EICH 1.1116 1.2256 1.3408 1.4942 1.5867 1.6347 1.6762
LICH 1.1116 1.2256 1.3406 1.4888 1.5801 1.6281 1.6695

Source: Hsiao, Yeong-Shiou, and Alan L. Tharp, "Analysis of Other New Variants of Coalesced Hashing,” Technical
Report TR-87-2, Computer Science Department, North Carolina State University, 1987.

Prédmérny pocet navstivenych kli¢h pri operaci FIND. Vzdy se
predpoklada rovnomérné rozlozeni klicl po celém oboru hodnot
hashovaci funkce. Nemusi nutné odpovidat realné situaci.

Algoritmizace

" Dynamické hashovani

Inkrementalni
A. Pri kritickém naplnéni tabulky ji zvétSime a prehashujeme.

B. Pri kritickem naplnéni tabulky naalokujeme novou vetsi tabulku, do
které zaCneme ukladat vSechny nové prvky. Ve stare pouze
vyhledavame a ruSime prvky. Pfi kazdé operaci (at uz v nove
nebo v staré tabulce) zrusime jeden prvek ve staré tabulce a
vloZime jej do nové tabulky. Po zruSeni vSech prvku ve staré
tabulce tuto tabulku zrusime. Toto opatfeni nam zajisti, ze bude
tabulka zruSena dfive nez bude potfeba naalokovat dalSi (ij. tfeti)
tabulku; a zaroven neni potreba provadet jednorazove
prehashovavani jako v pfedchozim pfipadé (takové prehashovani
muZze zpusobit vyznamné naruseni plynulosti pribéhu hashovani).

Rozsiritelné (Extendable)

Algoritmizace

Extendable hashing

Kli¢ se interpretuje jako binarni ¢islo. Tabulka ma adresar a zaznamy. Adresar
obsahuje odkazy do zaznamu a zaznamy obsahuji klice. Zaznamy se rozlisuji
prvnimi nékolika bity (prefixy) moznych kli¢u, kli€ je v zaznamu se stejnym
prefixem. Adresar vzdy obsahuje vSechny mozné prefixy, jichz je 2*p, kde p je
délka prefixu. Hodnota p se miize ménit.

00011 |2
00110 > Zaznam
pP= 00101 y,
— —— 01100 2
01011 Lokalni délka prefixu

pocet platnych bitt‘]vprefixu
vV ramci zaznamu. Setfi

misto.
10011 1 > Zde napf. nemusime
11011 vytvaret zvlast zaznam pro

10011 a zvI&st pro 11011.
Lokalni délka < p.

Algoritmizace

globalni délka prefixu
pocet platnych bitu prefixu 00011

p = log2(velikost tabulky)
00110

adresa 00101

01100
—> 01011

- —~/ 10011
11011

vlastni hashovaci tabulka

ukazatele
na zaznamy

Algoritmizace

Extendable hashing

2)

.

zaznam
(velikost je zde 3)

lokalni délka prefixu
pocet platnych bita prefixu
VvV ramci zaznamu

" Extendable hashing

00011 2
00110
00101

01100 2
01011

|

10011 1
11011

h(k,) = 100

Chceme pridat novy kli€ k1.

Zaznam kam patfi je urCen odkazem na fadku
hashovaci tabulky s adresou se stejnym prefixem
jakou ma zahashovana hodnota klice h(k1).

Algoritmizace

" Extendable hashing

00011 2
00110
00101

01100 2

/
s

10011 1
11011
11100

Algoritmizace

" J .
Extendable hashing
00011 2
00110
00101

01100 2

T~ . o1011

10011 1
11011

h(k,) = 11001
11100

Chceme pfidat novy kli€ k2, ale jeho zaznam je jiz plny. V tomto pfipadé stacCi zvétsit hodnotu lokalni
deélky prefixu tohoto zaznamu o 1 (lokalni délka prefixu musi byt vzdy < globalni délce prefixu), pfidat
uplné novy zaznam se stejnou hodnotou prefixu do tabulky (tj. pfepojit na n&j prvni polovinu ukazateld,
které ukazovaly na puvodni plny zaznam) a cely obsah starého plného zaznamu prehashovat. Do nové
vzniklého mista zahashujeme i novy KlicC.

Algoritmizace

" Extendable hashing

00011 2
00110
/ 00101
2
01100 2
~ ~——__ , o1011
10011 2
11011 2
11100
11001

Algoritmizace

Algoritmizace

|

Extendable hashing

00011
00110
00101

01100
01011

10011

11011
11100
11001

2

h(ks) = 00001

Chceme pfidat novy kli¢
k3, ale jeho zaznam je jiz
plny a navic jiz
nemuzZzeme ani zvétsit
hodnotu lokalni délky
prefixu.

V tomto pfipadé musime
o 1 zvétsit hodnotu
globalni délky prefixu a
tim i zvétsit velikost
hashovaci tabulky na
dvojnasobek. Ukazatele
zduplikujeme podle
hodnoty pfechoziho
prefixu.

Nyni muzeme aplikovat
postup jako v pfedchozim
pfipadé.

" Extendable hashing

Algoritmizace

7N

00011 3
00001
01100 2
01011
10011 2
11011 2
11100

11001

00110
00101

3

T i d -
Univerzalni hashovani

Kazda hashovaci funkce ma slaba mista, kdy pro rlizné klice dava
stejnou adresu. Proto je vyhodné prizptsobit hashovaci funkci pravée
zpracovavanym klicum.

Univerzalni hashovani

Misto jedné hashovaci funkce h(k) mame né&jakou koneCnou mnozinu H
funkci mapujicich U do intervalu {0, 1, ..., m-1}

Mnozina funkci H je univerzalni, pokud pro kazdou dvojici riznych klicu
X,y € U je poCet hashovacich funkci z mnoziny H, pro které h(x) = h(y),
nejvyse |H|/m.

Dusledek: Pravdépodobnost kolize pfi nahodném vybéru funkce h(k) z
mnoziny univerzalnich hashovacich funkci H tedy neni vySSi nez
pravdépodobnost kolize pfi nahodném a nezavislém vybéru dvou
stejnych hodnot z intervalu {0, 1, ..., m-1} tedy 1/m.

Pri prvnim spusténi programu jednu nahodné zvolime. Funkci pak
nahodné menime jen v pripadé, ze pocCet kolizi prevysuje pripustnou
mez. V tomto pripadé je samoziejme potreba prehashovat celou
tabulku.

Algoritmizace

O

o'%/:’)
Audience Q&A was
removed

(6D

o The Slido app must be installed on every computer

slido

you're presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Srůstající hashování -- coalesced hashing
	Snímek 5: LISCH (late insert standard coalesced hashing)
	Snímek 6: LISCH (late insert standard coalesced hashing)
	Snímek 7: LISCH (late insert standard coalesced hashing)
	Snímek 8: LISCH (late insert standard coalesced hashing)
	Snímek 9: LISCH (late insert standard coalesced hashing)
	Snímek 10: EISCH (early insert standard coalesced hashing)
	Snímek 11: EISCH (early insert standard coalesced hashing)
	Snímek 12: EISCH (early insert standard coalesced hashing)
	Snímek 13: EISCH (early insert standard coalesced hashing)
	Snímek 14: EISCH (early insert standard coalesced hashing)
	Snímek 15: EISCH (early insert standard coalesced hashing)
	Snímek 16: EISCH (early insert standard coalesced hashing)
	Snímek 17
	Snímek 18: Srůstající hashování s pomocnou pamětí
	Snímek 19: Srůstající hashování s pomocnou pamětí
	Snímek 20: LICH (late insert coalesced hashing)
	Snímek 21: LICH (late insert coalesced hashing)
	Snímek 22: LICH (late insert coalesced hashing)
	Snímek 23: LICH (late insert coalesced hashing)
	Snímek 24: EICH (early insert coalesced hashing)
	Snímek 25: EICH (early insert coalesced hashing)
	Snímek 26: EICH (early insert coalesced hashing)
	Snímek 27: EICH (early insert coalesced hashing)
	Snímek 28: VICH (variable insert coalesced hashing)
	Snímek 29: VICH (variable insert coalesced hashing)
	Snímek 30: VICH (variable insert coalesced hashing)
	Snímek 31: VICH (variable insert coalesced hashing)
	Snímek 32: Srůstající hashování s pomocnou pamětí
	Snímek 33: Celkové srovnání srůstajícího hashování
	Snímek 34: Efektivita srůstajícího hashování
	Snímek 35: Dynamické hashování
	Snímek 36: Extendable hashing
	Snímek 37: Extendable hashing
	Snímek 38: Extendable hashing
	Snímek 39: Extendable hashing
	Snímek 40: Extendable hashing
	Snímek 41: Extendable hashing
	Snímek 42: Extendable hashing
	Snímek 43: Extendable hashing
	Snímek 44: Univerzální hashování
	Snímek 45

