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Přehled

◼ Srůstající hashování

 LISCH (late insert standard coalesced hashing)

 EISCH (early insert standard coalesced hashing)

 LICH (late insert coalesced hashing)

 EICH (early insert coalesced hashing)

 VICH (variable insert coalesced hashing)
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Srůstající hashování -- coalesced hashing

Synonyma (po kolizi) se ukádají do jednosměrného 

spojového seznamu  synonym. Všechny seznamy 

jsou "propleteně" uloženy přímo v tabulce.

Tabulka ke každému klíči obsahuje ukazatel 

na další klíč v seznamu.

Každý klíč je součástí některého seznamu synonym. 

Při vyhledávání se postupuje stejně 

jako při vkládání, v podstatě jde

o lineární prohledávání spojového seznamu.

0 Ann 10

1

2 Ben 6

3

4 Irma 8

5 Hugo 7

6 Gene 4

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9

Ann0 Cole10 Dana9 Hugo5 Fred7

Ben3 Gene6 Irma4 Edna8

Jde o metodu řešení kolizí, nezáleží na konkrétní 

podobě hashovací funkce h(k).
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LISCH (late insert standard coalesced hashing)

Name Next

0

1

2

3

4

5

6

7

8

9

Ukazatel na první volné 

místo od konce tabulky.

Po každém přidání prvku 

se aktualizuje.

Hashovací funkce h, data d.

Pozice p := h(d);

Prohledej seznam začínající na 

pozici p a pokud nenajdeš d, 

přidej d do tabulky na první volné 

místo od konce tabulky a připoj ho 

do seznamu synonym d 

na poslední místo.

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7
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LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann --

1

2

3

4

5

6

7

8

9

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --
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LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben --

3 Dana --

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --
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LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7 Fred --

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Cole 7
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LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5 Hugo --

6 Gene --

7 Fred 6

8 Edna 5

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4 Irma --

5 Hugo --

6 Gene 5

7 Fred 6

8 Edna 5

9 Cole 7
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EISCH (early insert standard coalesced hashing)

Name Next

0

1

2

3

4

5

6

7

8

9

Ukazatel na první volné 

místo od konce tabulky.

Po každém přidání prvku 

se aktualizuje.

Hashovací funkce h, data d.

Pozice p := h(d);

Prohledej seznam začínající na 

pozici p a pokud nenajdeš d, 

přidej d do tabulky na první volné 

místo od konce tabulky a připoj ho 

do seznamu synonym d 

za  první místo.

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6



Algoritmizace
11/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann --

1

2

3

4

5

6

7

8

9

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --
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EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben --

3 Dana --

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --
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EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7 Fred --

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7
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EISCH (early insert standard coalesced hashing)

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

0 Ann 6

1

2 Ben 5

3 Dana --

4 Irma 9

5 Hugo 8

6 Gene 4

7 Fred --

8 Edna --

9 Cole 7



Algoritmizace
15/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

Ann

Ben

0

2

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Gene6

Cole9

Fred7

Edna8

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Insert(Hugo)
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EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Irma4

0 Ann 6

1

2 Ben 5

3 Dana --

4 Irma 9

5 Hugo 8

6 Gene 4

7 Fred --

8 Edna --

9 Cole 7

Insert(Irma)
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Srůstající hashování s pomocnou pamětí
◼ Máte sklep? A mohla bych ho vidět?

Kulový blesk (1979) - https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy

◼ Mohla….

https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
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Srůstající hashování s pomocnou pamětí

◼ Pro snížení srůstání a tedy zvýšení efektivity hashování se 

tabulka rozšiřuje o pomocnou paměť - tzv. sklep (cellar).

◼ Sklep je místo na konci tabulky, které není adresovatelné 

hashovací funkcí, má ale stejnou strukturu jako celá tabulka. 

◼ Algoritmy LICH a EICH jsou analogické varianty algoritmů 

LISCH a EISCH s přidáním sklepa. Po naplnění sklepa 

pokračuje plnění jako v LISCH a EISCH.

◼ Algoritmus VICH (variable insert coalesced hashing) připojuje 

prvek za poslední prvek seznamu, který je ještě ve sklepě. 

Pokud ve sklepě žádný není, vkládá jako EISCH, tj. hned za 

kolidující prvek v seznamu. 
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LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --
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LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9
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LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9
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LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben 8

3

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5 Hugo --

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4 Irma --

5 Hugo --

6 Gene --

7 Fred 6

8 Edna 4

9 Dana 7

10 Cole 9
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EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --
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EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Dana 10

10 Cole --

0 Ann 9

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana 10

10 Cole --
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EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 9

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana 10

10 Cole --

0 Ann 7

1

2 Ben 8

3

4

5

6

7 Fred 9

8 Edna --

9 Dana 10

10 Cole --

0 Ann 7

1

2 Ben 8

3

4

5

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --
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EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 7

1

2 Ben 8

3

4

5

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --

0 Ann 5

1

2 Ben 8

3

4

5 Hugo 7

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --

0 Ann 5

1

2 Ben 8

3

4 Irma --

5 Hugo 7

6 Gene 9

7 Fred 6

8 Edna 4

9 Dana 10

10 Cole --
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VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --
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VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9



Algoritmizace
30/45

VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4

5

6 Gene 8

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9
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VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben 6

3

4

5

6 Gene 8

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4

5 Hugo 7

6 Gene 8

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4 Irma 8

5 Hugo 7

6 Gene 4

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9
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Srůstající hashování s pomocnou pamětí
α – faktor naplnění (load factor)
α = N/M’

β – faktor adresování (address factor)
β =  M/M’

K = M’ – M = velikost sklepa

N – počet vložených prvků
M’ – počet míst v hashovací tabulce
M – počet míst adresovatelných hashovací 
funkcí

Křivky představují optimální volbu β
v závislosti na daném α při operaci FIND. 

Případy:
SUCCESSFUL - klíč je v tabulce
UNSUCCESSFUL - klíč není v tabulce
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Celkové srovnání srůstajícího hashování

◼ S použitím sklepa vychází nejlépe VICH. Doporučená velikost β je 0,86.

◼ Bez sklepa vychází nejlépe EISCH.
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Efektivita srůstajícího hashování

◼ Průměrný počet navštívených klíčů při operaci FIND.  Vždy se 
předpokládá rovnoměrné rozložení klíčů po celém oboru hodnot 
hashovací funkce. Nemusí nutně odpovídat reálné situaci.
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Dynamické hashování

◼ Inkrementální
A. Při kritickém naplnění tabulky ji zvětšíme a přehashujeme.

B. Při kritickém naplnění tabulky naalokujeme novou větší tabulku, do 

které začneme ukládat všechny nové prvky. Ve staré pouze 

vyhledáváme a rušíme prvky. Při každé operaci (ať už v nové 

nebo v staré tabulce) zrušíme jeden prvek ve staré tabulce a 

vložíme jej do nové tabulky. Po zrušení všech prvků ve staré 

tabulce tuto tabulku zrušíme. Toto opatření nám zajistí, že bude 

tabulka zrušena dříve než bude potřeba naalokovat další (tj. třetí) 

tabulku; a zároveň není potřeba provádět jednorázové 

přehashovávání jako v předchozím případě (takové přehashování 

může způsobit významné narušení plynulosti průběhu hashování).

◼ Rozšiřitelné (Extendable)
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

p=2

Lokální délka prefixu

počet platných bitů prefixu 

v rámci záznamu. Šetří 

místo.

Zde např. nemusíme 

vytvářet zvlášť záznam pro  

10011 a zvlášť pro 11011.

Lokální délka ≤ p.

Záznam

Klíč se interpretuje jako binární číslo.  Tabulka má adresář a záznamy. Adresář 

obsahuje odkazy do záznamů a záznamy obsahují klíče. Záznamy se rozlišují 

prvními několika bity (prefixy) možných klíčů, klíč je v záznamu se stejným 

prefixem. Adresář vždy obsahuje všechny možné prefixy, jichž je 2^p, kde p je 

délka prefixu. Hodnota p se může měnit. 
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

2

adresa

globální délka prefixu

počet platných bitů prefixu 

p = log2(velikost tabulky)

lokální délka prefixu

počet platných bitů prefixu 

v rámci záznamu

záznam

(velikost je zde 3)

ukazatele

na záznamy

vlastní hashovací tabulka
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

2

11100

Chceme přidat nový klíč k1.

Záznam kam patří je určen odkazem na řádku 

hashovací tabulky s adresou se stejným prefixem 

jakou má zahashovaná hodnota klíče h(k1).

h(k1) =
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

11100

2

2

1

2
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

11100

2

2

1

2

11001

Chceme přidat nový klíč k2, ale jeho záznam je již plný. V tomto případě stačí zvětšit hodnotu lokální 

délky prefixu tohoto záznamu o 1 (lokální délka prefixu musí být vždy ≤ globální délce prefixu), přidat 

úplně nový záznam se stejnou hodnotou prefixu do tabulky (tj. přepojit na něj první polovinu ukazatelů, 

které ukazovaly na původní plný záznam) a celý obsah starého plného záznamu přehashovat. Do nově 

vzniklého místa zahashujeme i nový klíč.

h(k2) =
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

2

2

2

2

11011

11100

11001

2
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Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

2

2

2

2

11011

11100

11001

2

00001

Chceme přidat nový klíč 

k3, ale jeho záznam je již 

plný a navíc již 

nemůžeme ani zvětšit 

hodnotu lokální délky 

prefixu. 

V tomto případě musíme 

o 1 zvětšit hodnotu 

globální délky prefixu a 

tím i zvětšit velikost 

hashovací tabulky na 

dvojnásobek. Ukazatele 

zduplikujeme podle 

hodnoty přechozího 

prefixu.

Nyní můžeme aplikovat 

postup jako v předchozím 

případě.

h(k3) =
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◼ Každá hashovací funkce má slabá místa, kdy pro různé klíče dává 

stejnou adresu. Proto je výhodné přizpůsobit hashovací funkci právě 
zpracovávaným klíčum.

◼ Univerzální hashování

 Místo jedné hashovací funkce h(k) máme nějakou konečnou množinu H

funkcí mapujících U do intervalu {0, 1, …, m-1}

 Množina funkcí H je univerzální, pokud pro každou dvojici různých klíčů 

x,y  U je počet hashovacích funkcí z množiny H, pro které h(x) = h(y), 

nejvýše |H|/m.

 Důsledek: Pravděpodobnost  kolize při náhodném výběru funkce h(k) z 

množiny univerzálních hashovacích funkci H tedy není vyšší než 

pravděpodobnost  kolize při náhodném a nezávislém výběru dvou 

stejných hodnot z intervalu {0, 1, …, m-1} tedy 1/m. 

 Při prvním spuštění programu jednu náhodně zvolíme. Funkci pak 

náhodně  měníme jen v případě, že počet kolizí převyšuje přípustnou 

mez. V tomto případě je samozřejmě potřeba přehashovat celou 

tabulku.
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