
Algoritmizace
1/45

Algoritmizace

Daniel Průša, Robert Pěnička

2025

Algoritmizace
2/45

Přehled

◼ Srůstající hashování

 LISCH (late insert standard coalesced hashing)

 EISCH (early insert standard coalesced hashing)

 LICH (late insert coalesced hashing)

 EICH (early insert coalesced hashing)

 VICH (variable insert coalesced hashing)

Join at slido.com

#3276540

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
4/45

Srůstající hashování -- coalesced hashing

Synonyma (po kolizi) se ukádají do jednosměrného

spojového seznamu synonym. Všechny seznamy

jsou "propleteně" uloženy přímo v tabulce.

Tabulka ke každému klíči obsahuje ukazatel

na další klíč v seznamu.

Každý klíč je součástí některého seznamu synonym.

Při vyhledávání se postupuje stejně

jako při vkládání, v podstatě jde

o lineární prohledávání spojového seznamu.

0 Ann 10

1

2 Ben 6

3

4 Irma 8

5 Hugo 7

6 Gene 4

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9

Ann0 Cole10 Dana9 Hugo5 Fred7

Ben3 Gene6 Irma4 Edna8

Jde o metodu řešení kolizí, nezáleží na konkrétní

podobě hashovací funkce h(k).

Algoritmizace
5/45

LISCH (late insert standard coalesced hashing)

Name Next

0

1

2

3

4

5

6

7

8

9

Ukazatel na první volné

místo od konce tabulky.

Po každém přidání prvku

se aktualizuje.

Hashovací funkce h, data d.

Pozice p := h(d);

Prohledej seznam začínající na

pozici p a pokud nenajdeš d,

přidej d do tabulky na první volné

místo od konce tabulky a připoj ho

do seznamu synonym d

na poslední místo.

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

Algoritmizace
6/45

LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann --

1

2

3

4

5

6

7

8

9

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

Algoritmizace
7/45

LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben --

3 Dana --

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

Algoritmizace
8/45

LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7 Fred --

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Cole 7

Algoritmizace
9/45

LISCH (late insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 8 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5 Hugo --

6 Gene --

7 Fred 6

8 Edna 5

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4 Irma --

5 Hugo --

6 Gene 5

7 Fred 6

8 Edna 5

9 Cole 7

Algoritmizace
10/45

EISCH (early insert standard coalesced hashing)

Name Next

0

1

2

3

4

5

6

7

8

9

Ukazatel na první volné

místo od konce tabulky.

Po každém přidání prvku

se aktualizuje.

Hashovací funkce h, data d.

Pozice p := h(d);

Prohledej seznam začínající na

pozici p a pokud nenajdeš d,

přidej d do tabulky na první volné

místo od konce tabulky a připoj ho

do seznamu synonym d

za první místo.

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

Algoritmizace
11/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann --

1

2

3

4

5

6

7

8

9

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

Algoritmizace
12/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben --

3 Dana --

4

5

6

7

8

9 Cole --

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

Algoritmizace
13/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7 Fred --

8 Edna --

9 Cole 7

0 Ann 9

1

2 Ben 8

3 Dana --

4

5

6

7

8 Edna --

9 Cole --

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Algoritmizace
14/45

EISCH (early insert standard coalesced hashing)

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

0 Ann 6

1

2 Ben 5

3 Dana --

4 Irma 9

5 Hugo 8

6 Gene 4

7 Fred --

8 Edna --

9 Cole 7

Algoritmizace
15/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

Ann

Ben

0

2

0 Ann 6

1

2 Ben 8

3 Dana --

4

5

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Gene6

Cole9

Fred7

Edna8

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Insert(Hugo)

Algoritmizace
16/45

EISCH (early insert standard coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 3 2 9 0 2 6

0 Ann 6

1

2 Ben 5

3 Dana --

4

5 Hugo 8

6 Gene 9

7 Fred --

8 Edna --

9 Cole 7

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Ann

Ben

0

2

Gene6

Cole9

Fred7

Edna8

Hugo5

Irma4

0 Ann 6

1

2 Ben 5

3 Dana --

4 Irma 9

5 Hugo 8

6 Gene 4

7 Fred --

8 Edna --

9 Cole 7

Insert(Irma)

Algoritmizace
17/4517/56

Audience Q&A was

removed

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

Algoritmizace
18/45

Srůstající hashování s pomocnou pamětí
◼ Máte sklep? A mohla bych ho vidět?

Kulový blesk (1979) - https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy

◼ Mohla….

https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy
https://youtu.be/O-t0WiiQg48?si=1NZqi7y7ERjTWtxy

Algoritmizace
19/45

Srůstající hashování s pomocnou pamětí

◼ Pro snížení srůstání a tedy zvýšení efektivity hashování se

tabulka rozšiřuje o pomocnou paměť - tzv. sklep (cellar).

◼ Sklep je místo na konci tabulky, které není adresovatelné

hashovací funkcí, má ale stejnou strukturu jako celá tabulka.

◼ Algoritmy LICH a EICH jsou analogické varianty algoritmů

LISCH a EISCH s přidáním sklepa. Po naplnění sklepa

pokračuje plnění jako v LISCH a EISCH.

◼ Algoritmus VICH (variable insert coalesced hashing) připojuje

prvek za poslední prvek seznamu, který je ještě ve sklepě.

Pokud ve sklepě žádný není, vkládá jako EISCH, tj. hned za

kolidující prvek v seznamu.

Algoritmizace
20/45

LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

Algoritmizace
21/45

LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

Algoritmizace
22/45

LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9

Algoritmizace
23/45

LICH (late insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 5 8

0 Ann 10

1

2 Ben 8

3

4

5

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5 Hugo --

6 Gene --

7 Fred 6

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4 Irma --

5 Hugo --

6 Gene --

7 Fred 6

8 Edna 4

9 Dana 7

10 Cole 9

Algoritmizace
24/45

EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

Algoritmizace
25/45

EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 9

1

2 Ben --

3

4

5

6

7

8

9 Dana 10

10 Cole --

0 Ann 9

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana 10

10 Cole --

Algoritmizace
26/45

EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 9

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana 10

10 Cole --

0 Ann 7

1

2 Ben 8

3

4

5

6

7 Fred 9

8 Edna --

9 Dana 10

10 Cole --

0 Ann 7

1

2 Ben 8

3

4

5

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --

Algoritmizace
27/45

EICH (early insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 7 0 8

0 Ann 7

1

2 Ben 8

3

4

5

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --

0 Ann 5

1

2 Ben 8

3

4

5 Hugo 7

6 Gene 9

7 Fred 6

8 Edna --

9 Dana 10

10 Cole --

0 Ann 5

1

2 Ben 8

3

4 Irma --

5 Hugo 7

6 Gene 9

7 Fred 6

8 Edna 4

9 Dana 10

10 Cole --

Algoritmizace
28/45

VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann --

1

2

3

4

5

6

7

8

9

10

0 Ann --

1

2 Ben --

3

4

5

6

7

8

9

10

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

Algoritmizace
29/45

VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9

10 Cole --

0 Ann 10

1

2 Ben --

3

4

5

6

7

8

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

Algoritmizace
30/45

VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben 8

3

4

5

6

7

8 Edna --

9 Dana --

10 Cole 9

0 Ann 10

1

2 Ben 8

3

4

5

6

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4

5

6 Gene 8

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

Algoritmizace
31/45

VICH (variable insert coalesced hashing)

data Ann Ben Cole Dana Edna Fred Gene Hugo Irma

h(data) 0 2 0 0 2 0 2 0 6

0 Ann 10

1

2 Ben 6

3

4

5

6 Gene 8

7 Fred --

8 Edna --

9 Dana 7

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4

5 Hugo 7

6 Gene 8

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9

0 Ann 10

1

2 Ben 6

3

4 Irma 8

5 Hugo 7

6 Gene 4

7 Fred --

8 Edna --

9 Dana 5

10 Cole 9

Algoritmizace
32/45

Srůstající hashování s pomocnou pamětí
α – faktor naplnění (load factor)
α = N/M’

β – faktor adresování (address factor)
β = M/M’

K = M’ – M = velikost sklepa

N – počet vložených prvků
M’ – počet míst v hashovací tabulce
M – počet míst adresovatelných hashovací
funkcí

Křivky představují optimální volbu β
v závislosti na daném α při operaci FIND.

Případy:
SUCCESSFUL - klíč je v tabulce
UNSUCCESSFUL - klíč není v tabulce

Algoritmizace
33/45

Celkové srovnání srůstajícího hashování

◼ S použitím sklepa vychází nejlépe VICH. Doporučená velikost β je 0,86.

◼ Bez sklepa vychází nejlépe EISCH.

Algoritmizace
34/45

Efektivita srůstajícího hashování

◼ Průměrný počet navštívených klíčů při operaci FIND. Vždy se
předpokládá rovnoměrné rozložení klíčů po celém oboru hodnot
hashovací funkce. Nemusí nutně odpovídat reálné situaci.

Algoritmizace
35/45

Dynamické hashování

◼ Inkrementální
A. Při kritickém naplnění tabulky ji zvětšíme a přehashujeme.

B. Při kritickém naplnění tabulky naalokujeme novou větší tabulku, do

které začneme ukládat všechny nové prvky. Ve staré pouze

vyhledáváme a rušíme prvky. Při každé operaci (ať už v nové

nebo v staré tabulce) zrušíme jeden prvek ve staré tabulce a

vložíme jej do nové tabulky. Po zrušení všech prvků ve staré

tabulce tuto tabulku zrušíme. Toto opatření nám zajistí, že bude

tabulka zrušena dříve než bude potřeba naalokovat další (tj. třetí)

tabulku; a zároveň není potřeba provádět jednorázové

přehashovávání jako v předchozím případě (takové přehashování

může způsobit významné narušení plynulosti průběhu hashování).

◼ Rozšiřitelné (Extendable)

Algoritmizace
36/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

p=2

Lokální délka prefixu

počet platných bitů prefixu

v rámci záznamu. Šetří

místo.

Zde např. nemusíme

vytvářet zvlášť záznam pro

10011 a zvlášť pro 11011.

Lokální délka ≤ p.

Záznam

Klíč se interpretuje jako binární číslo. Tabulka má adresář a záznamy. Adresář

obsahuje odkazy do záznamů a záznamy obsahují klíče. Záznamy se rozlišují

prvními několika bity (prefixy) možných klíčů, klíč je v záznamu se stejným

prefixem. Adresář vždy obsahuje všechny možné prefixy, jichž je 2^p, kde p je

délka prefixu. Hodnota p se může měnit.

Algoritmizace
37/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

2

adresa

globální délka prefixu

počet platných bitů prefixu

p = log2(velikost tabulky)

lokální délka prefixu

počet platných bitů prefixu

v rámci záznamu

záznam

(velikost je zde 3)

ukazatele

na záznamy

vlastní hashovací tabulka

Algoritmizace
38/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

2

2

1

2

11100

Chceme přidat nový klíč k1.

Záznam kam patří je určen odkazem na řádku

hashovací tabulky s adresou se stejným prefixem

jakou má zahashovaná hodnota klíče h(k1).

h(k1) =

Algoritmizace
39/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

11100

2

2

1

2

Algoritmizace
40/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

11011

11100

2

2

1

2

11001

Chceme přidat nový klíč k2, ale jeho záznam je již plný. V tomto případě stačí zvětšit hodnotu lokální

délky prefixu tohoto záznamu o 1 (lokální délka prefixu musí být vždy ≤ globální délce prefixu), přidat

úplně nový záznam se stejnou hodnotou prefixu do tabulky (tj. přepojit na něj první polovinu ukazatelů,

které ukazovaly na původní plný záznam) a celý obsah starého plného záznamu přehashovat. Do nově

vzniklého místa zahashujeme i nový klíč.

h(k2) =

Algoritmizace
41/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

2

2

2

2

11011

11100

11001

2

Algoritmizace
42/45

Extendable hashing

00

01

10

11

00011

00110

00101

01100

01011

10011

2

2

2

2

11011

11100

11001

2

00001

Chceme přidat nový klíč

k3, ale jeho záznam je již

plný a navíc již

nemůžeme ani zvětšit

hodnotu lokální délky

prefixu.

V tomto případě musíme

o 1 zvětšit hodnotu

globální délky prefixu a

tím i zvětšit velikost

hashovací tabulky na

dvojnásobek. Ukazatele

zduplikujeme podle

hodnoty přechozího

prefixu.

Nyní můžeme aplikovat

postup jako v předchozím

případě.

h(k3) =

Algoritmizace
43/45

Extendable hashing

000

001

010

011

100

101

110

111

00011

00001

01100

01011

10011

3

2

2

3

11011

11100

11001

2

00110

00101

3

Algoritmizace
44/45

Univerzální hashování
◼ Každá hashovací funkce má slabá místa, kdy pro různé klíče dává

stejnou adresu. Proto je výhodné přizpůsobit hashovací funkci právě
zpracovávaným klíčum.

◼ Univerzální hashování

 Místo jedné hashovací funkce h(k) máme nějakou konečnou množinu H

funkcí mapujících U do intervalu {0, 1, …, m-1}

 Množina funkcí H je univerzální, pokud pro každou dvojici různých klíčů

x,y  U je počet hashovacích funkcí z množiny H, pro které h(x) = h(y),

nejvýše |H|/m.

 Důsledek: Pravděpodobnost kolize při náhodném výběru funkce h(k) z

množiny univerzálních hashovacích funkci H tedy není vyšší než

pravděpodobnost kolize při náhodném a nezávislém výběru dvou

stejných hodnot z intervalu {0, 1, …, m-1} tedy 1/m.

 Při prvním spuštění programu jednu náhodně zvolíme. Funkci pak

náhodně měníme jen v případě, že počet kolizí převyšuje přípustnou

mez. V tomto případě je samozřejmě potřeba přehashovat celou

tabulku.

Audience Q&A was

removed

The Slido app must be installed on every computer
you’re presenting from

https://www.slido.com/powerpoint-polling?utm_source=powerpoint&utm_medium=placeholder-slide
https://www.slido.com/support/ppi/how-to-change-the-design
https://www.slido.com/support/ppi/how-to-change-the-design

	Snímek 1: Algoritmizace
	Snímek 2: Přehled
	Snímek 3
	Snímek 4: Srůstající hashování -- coalesced hashing
	Snímek 5: LISCH (late insert standard coalesced hashing)
	Snímek 6: LISCH (late insert standard coalesced hashing)
	Snímek 7: LISCH (late insert standard coalesced hashing)
	Snímek 8: LISCH (late insert standard coalesced hashing)
	Snímek 9: LISCH (late insert standard coalesced hashing)
	Snímek 10: EISCH (early insert standard coalesced hashing)
	Snímek 11: EISCH (early insert standard coalesced hashing)
	Snímek 12: EISCH (early insert standard coalesced hashing)
	Snímek 13: EISCH (early insert standard coalesced hashing)
	Snímek 14: EISCH (early insert standard coalesced hashing)
	Snímek 15: EISCH (early insert standard coalesced hashing)
	Snímek 16: EISCH (early insert standard coalesced hashing)
	Snímek 17
	Snímek 18: Srůstající hashování s pomocnou pamětí
	Snímek 19: Srůstající hashování s pomocnou pamětí
	Snímek 20: LICH (late insert coalesced hashing)
	Snímek 21: LICH (late insert coalesced hashing)
	Snímek 22: LICH (late insert coalesced hashing)
	Snímek 23: LICH (late insert coalesced hashing)
	Snímek 24: EICH (early insert coalesced hashing)
	Snímek 25: EICH (early insert coalesced hashing)
	Snímek 26: EICH (early insert coalesced hashing)
	Snímek 27: EICH (early insert coalesced hashing)
	Snímek 28: VICH (variable insert coalesced hashing)
	Snímek 29: VICH (variable insert coalesced hashing)
	Snímek 30: VICH (variable insert coalesced hashing)
	Snímek 31: VICH (variable insert coalesced hashing)
	Snímek 32: Srůstající hashování s pomocnou pamětí
	Snímek 33: Celkové srovnání srůstajícího hashování
	Snímek 34: Efektivita srůstajícího hashování
	Snímek 35: Dynamické hashování
	Snímek 36: Extendable hashing
	Snímek 37: Extendable hashing
	Snímek 38: Extendable hashing
	Snímek 39: Extendable hashing
	Snímek 40: Extendable hashing
	Snímek 41: Extendable hashing
	Snímek 42: Extendable hashing
	Snímek 43: Extendable hashing
	Snímek 44: Univerzální hashování
	Snímek 45

